Effect of Different Surface Treatments on Various Physical and Mechanical Properties of Veneered Nano-crystalline Zirconia

Thesis

Submitted for Partial Fulfillment of the Requirements of the Doctorate Degree in Crown and Bridge
Faculty of Dentistry, Ain Shams University
Presented by

Mennatallah Mohie el-Din Wahba Aly el-Din

B.Ds (Ain Shams University 2007)
M.Sc (Ain Shams University 2012)
Assistant Lecturer in Crown and Bridge Department
Faculty of Dentistry, Future University

Faculty of Dentistry

Ain Shams University

2015

Supervisors

Dr. Tarek Salah El-Din Morsi

Assistant Professor of Fixed Prosthodontics Head of Crown and Bridge Department Faculty of Dentistry Ain Shams University

Dr.Ashraf Hussien Sherif

Professor of Fixed Prosthodontics

Department of Fixed Prosthodontics

Faculty of Oral and Dental Medicine Cairo University

Head of Crown and Bridge Department and Vice Dean

Faculty of Dentistry Future University

Dr. Amr Saleh el-Etreby

Lecturer of Fixed Prosthodontics
Crown and Bridge Department
Faculty of Dentistry Ain Shams University

بسو الله الرحمن الرحيم

{نَرْفَعُ دَرَجَاتٍ مَنْ نَشَاءُ وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ}

حدق الله العظيم

سورة يوسفد (آية 76)

Acknowledgment

First and foremost-without any question or hesitation-I would love to express my deepest gratitude and sincere appreciation to my supervisor and mentor, ever since I graduated, Dr. Tarek Salah el-Din Morsi, Assistant professor of Fixed Prosthodontics and Head of Crown and Bridge Department Faculty of Dentistry, Ain Shams University for his priceless effort, meticulous care, unsurpassed support and patience throughout the course of this research. Without his encouragement and invaluable contributions, this research would have never been possible. He has always guided me through the way providing all the help and care and kept me on course the entire way. For him, I will remain eternally indebted.

My sincere due respect, appreciation and thanks go to **Professor Dr. Ashraf Hussien**, Professor of Fixed Prosthodontics Faculty of Dentistry, Cairo University, and Head of Crown and Bridge Department and Vice Dean, Faculty of Dentistry, Future University

for his valuable guidance and support through the whole course of research and over the years of work.

Very special thanks go to Dr. Amr el-Etreby, Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for his guidance, assistance and encouragement throughout this work. He has always been very helpful and generous with his time and effort.

My deepest love and appreciation go to my family for their great help, support and patience.

Finally, I'd like to thank all my friends, colleagues and all the FUE family for always being there providing support and help whenever needed.

Dedication

To my dad's soul..... The one who has always believed in me. He has always been the source of my strength encouragement and inspiration ever since the very beginning and all through the way of life. He has always been my role model and will always be. Hope I could always make him proud.

To my mom....Thanks for all your support, patience and unconditional love. You're God's gift on earth.

70 my **brother**.....My first friend, backbone and everlasting source of support.

To my dearest friends.....You've always been the reason for my growth and progress.

Contents

List of Tables	i
List of Figures	7
Introduction	1
Review of Literature	4
Statement of the Problem	39
Aim of the Study	40
Materials and Methods	
Results	72
Discussion	111
Summary	131
Conclusions	134
References	136
Arabic Summary	

LIST OF TABLES

Table 1: Chemical composition of inCoris 1ZI41
<u>Table 2: Technical data of inCoris TZI.</u>
<u>Table 3: Physical properties of VITA VM9</u>
<u>Table 4: Standard composition of Cojet powder</u> 44
Table 5: Physical properties of nano-crystalline Yettria stabilized nano-
zirconia powder45
<u>Table 6: Dentobond porcelain etch composition</u>
<u>Table 7: Samples grouping for shear bond strength test</u>
Table 8: Samples grouping for biaxial flexural strength test, color
reproduction and translucency parameter measurment
Table 9: Firing chart of VITAVM9
Table 10: Firing chart of VITA AKZENT glaze
Table 11: Elemental composition of untreated zirconia plate
Table 12: Elemental composition of tribochemical coated zirconia plate76
Table 13: Elemental composition of zirconia plate treated with zirconia
powder deposition
Table 14: Elemental composition of glass graded zirconia plate80
Table 15: Mean (SD) of surface roughness values of different surface
treatment groups
Table 16: One way analysis of variance (ANOVA) showing the effect of
different surface treatments on surface roughness values
Table 17: Multiple comparison tests showing the effect of different surface
treatments on surface roughness; Dunnett-t for comparison with the
control group and Boneferroni for comparison between the groups82
Table 18: Mean (SD) shear bond strength values of different surface
treatment groups83

Table 19: One way analysis of of variance (ANOVA) for testing the mean
values of shear bond strength on un-aged sub-groups84
Table 20: Multiple comparison tests showing the effect of different surface
treatments on shear bond strength values of un-aged sub-groups;
Dunnett-t for comparison with the control group and Boneferroni for
comparison between the groups
Table 21: One way analysis of variance (ANOVA) for testing the mean
values of shear bond strength on aged sub-groups85
Table 22: Multiple comparison tests showing the effect of different surface
treatments on shear bond strength values of aged sub-groups; Dunnett-t
for comparison with the control group and Boneferroni for comparison
between the groups
Table 23: Independent samples t-test comparing the shear bond strength
means between un-aged and aged sub-groups of each surface treatment
group
Table 24: Mean (SD) of bi-axial flexural strength values in different surface
treatment groups before and after aging
Table 25: One way analysis of variance (ANOVA) for testing the means of
bi-axial strength values of un-aged sub-groups
Table 26: One way analysis of variance (ANOVA) for testing the means of
bi-axial strength values of aged sub-groups
Table 27: Independent samples t-test comparing the mean (TP) between un-
aged and aged sub-groups in different surface treatment groups89
Table 28: Mean (SD) L* values of different surface treatment groups before
and after aging90
Table 29: One way Analysis of variance (ANOVA) comparing the means of
L* values of unged sub-groups of different surface treatment groups91

Table 30: Multiple comparison tests showing the effect of diiferent surface
treatments on L* value of un-aged subgroups; Dunnett-t for comparisons
with the control group and Bonferroni for comparisons between groups91
Table 31: One way analysis of variance (ANOVA) comparing the means of
L*values of aged sub-groups for different surface treatment groups92
Table 32: Multiple comparison tests showing the effect of different surface
treatments on L* values of aged sub-groups; Dunnett-t for comparisons
with the control group and Bonferroni for comparisons between groups.
92
Table 33: Independent samples t-test comparing the L* value means
between un-aged and aged sub-groups of each surface treatment groups
93
Table 34: Mean (SD) of a* value of different surface treatment groups
before and after aging. 94
Table 35: One way analysis of variance (ANOVA) comparing the a* value
means of un-aged sub-groups of different surface treatment groups95
Table 36: Multiple comparison tests showing the effect of different surface
treatment methods on a* value of un-aged sub-groups; Dunnett-t for
comparison with the control group and Bonferroni for comparison
between groups95
Table 37: One way analysis of variance (ANOVA) comparing the a* value
means of aged sub-groups of different surface treatment groups96
Table 38:Multiple comparison tests showing the effect of different surface
treatments on a* value of aged sub-groups; Dunnett-t for comparison
with the control group and Bonnferroni for comparison between groups.
97

Table 39: Independent samples t-test comparing the a* value means between
the un-aged and aged sub-groups of different surface treatment groups. 98
Table 40: Mean (SD) of b* value of different surface treatment groups
before and after aging99
Table 41: One way analysis of variance (ANOVA) comparing the b* value
means of an-aged sub-groups of different surface treatment groups100
Table 42: Multiple comparison tests showing the effect of different surface
treatments on b* value of unaged sub-groups; Dunnett-t test for
comparisons with the control group and Bonferronni for comparisons
between groups
Table 43: One way analysis of variance (ANOVA) comparing the b* value
means of aged sub-groups of different surface treatment groups101
Table 44: Multiple comparison tests showing the effect of different surface
treatments on the b* value of aged sub-groups; Dunnett-t for comparisons
with the control group and Bonferroni for comparisons between groups.
101
Table 45: Independent samples t-test comparing the b* value means between
unaged and aged sub-groups of different surface treatment groups 102
Table 46: Mean and (SD) of delta E values for different surface treatment
groups before and after aging
Table 47: One way analysis of variance (ANOVA) comparing the delta E
means of un-aged sub-groups of different surface treatment groups104
Table 48: Multiple comparison tests showing the effect of different surface
treatments on the delta E value of un-aged sub-groups; Dunnett-t test for
comparison with the control group and Bonnferroni for comparison
between the groups

Table 49: One way analysis of variance (ANOVA) comparing the delta E
means of aged sub-groups of different surface treatment groups 105
Table 50: Multiple comparison tets showing the effect of different surface
treatments on the delta E value of aged sub-groups; Dunnett-t test for
comparison with the control group and Bonnferroni for comparisons
between the groups105
Table 51: Independent samples t- test comparing delta E value means
between un-aged and aged sub-groups of each surface treatment group.
106
Table 52: Mean (SD) of translucency parameter (TP) of different surface
treatment groups before and after aging
Table 53: One way analysis of variance (ANOVA) comparing the (TP)
means of un-aged sub-groups of different surface treatment groups108
Table 54: Multiple comparison tets showing the effect of different surface
treatments on the TP value of un-aged sub-groups; Dunnett-t test for
comparison with the control group and Bonnferroni for comparisons
between the groups. 108
Table 55: One way analysis of variance (ANOVA) comparing the (TP)
means of aged sub-groups of different surface treatment groups 109
Table 56: Multiple comparison tests showing the effect of different surface
treatments on the TP value of aged sub-groups; Dunnett-t test for
comparison with the control group and Bonnferroni for comparisons
between the groups. 109
Table 57: Independent samples t-test comparing the mean (TP) between un-
aged and aged sub-groups in different surface treatment groups110

LIST OF FIGURES

Figure 1: inCoris TZI block 40/1942
Figure 2: inCoris coloring liquid
Figure 3: VITAVM9 ENL powder
Figure 4:VITA AKZENT glaze powder and liquid44
Figure 5: Cojet powder
Figure 6: Nano-crystalline YTZP powder
Figure 7: Dentobond porcelain etch
Figure 8: Stainless steel disc mounted on a milling machine for cutting of
zirconia samples
Figure 9: Hardened stainless steel disc
Figure 10: Milled zirconia plate for shear bond strength test and disc for bi-
axial flexural strength test, color reproduction and transclucency
measurments. 50
Figure 11: Dipping of zirconia samples in coloring solution
Figure 12: Tribochemichal coating of zirconia disc
Figure 13: zirconia powder coating of zirconia disc
Figure 14: Glass grading of zirconia disc
Figure 15: Diagramatic drawing showing a specially designed mould for
glass layer thickness adjustment on plate samples
Figure 16: Diagramatic drawing showing a specially designed mold for glass
layer thickness adjustment on disc-shaped samples
Figure 17: zirconia samples supported by beads on the firing tray57
Figure 18: Scanning electron microscope
Figure 19: Digital microscope connected on a special software for
measurement of Ra value

Figure 20: Sintered zirconia plate after firing of the porcelain discs60
Figure 21: Two-part teflon mold for build-up of veneering porcelain61
Figure 22: Veneering of zirconia discs in a specially designed mold62
Figure 23: Glazing of zirconia discs
Figure 24: VITA Easyshade Compact
Figure 25:Color measurment over white background using VITA Easyshade
<u>Compact</u> 64
Figure 26: Measurement of color parameters over black background65
Figure 27: Sample fixed on LLoyd universal testing machine for shear bond
strength test
Figure 28: Chisel-shaped piston directed at the zirconia-veneer interface67
Figure 29: Three hardened stainless steel balls positioned 120° apart on a
support circle with a diameter 10 mm. 69
Figure 30: zirconia disc concentrically placed over the three balls and
fixed to the LLoyd universal testing machine for bi-axial flexural strength
<u>test</u>
Figure 31: Autoclave Sturdy SA-260-MA
Figure 32: Veneered samples placed for autoclave aging70
Figure 33:SEM image of untreated zirconia plate. (1000X)
Figure 34: Elemental composition of untreated zirconia plate74
Figure 35: SEM image of zirconia tribochemichal silica coated zirconia
<u>plate. (1000X)</u> 75
Figure 36: Elemental composition of tribochemical coated zirconia plate76
Figure 37: SEM image of zirconia plate treated with zirconia powder
<u>deposition.(1000X)</u>
Figure 38: Elemental composition of zirconoa plate treated with zirconia
powder deposition

Figure 39:SEM image of glass graded graded zirconia plate(1000X).(a)
After fusing with glass ceramic (b) After etching ewith 10% HF79
Figure 40: Elemental composition of glass graded zirconia plate80
Figure 41: Bar chart showing means of (Ra) value in relation to different
surface treatments
Figure 42: Bar chart showing means of shear bond strength in relation to
different surface treatments before and after aging
Figure 43: Bar chart showing means of bi-axial flexural strength values in
relation to different surface treatments before and after aging87
Figure 44: Bar chart showing mean of L* value in relation to different
surface treatments before and after aging90
Figure 45: Bar chart showing means of a* value in relation to different
surface treatments before and after aging94
Figure 46: Bar chart showing means of b* value in relation to different
surface treatments before and after aging99
Figure 47: Bar chart showing means of ΔE in relation to different surface
treatments before and after aging
Figure 48: Bar chart showing means of (TP) in relation to different surface
treatments before and after aging107