Relation between fecal calprotectin concentration and severity of hepatitis c (HCV) related chronic liver disease

Thesis

Submitted for Partial Fulfillment of Master Degree In Tropical Medicine

By
Amr Eltaher Elsaleh Daifalla
M.B.B.CH
Alexandria University

Under Supervision of

Prof. Dr. Mohamed Awad Mansour

Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Dr. Hossam Eldin Mohamed Salem

Lecturer of Tropical Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost I feel always indebted to Allah, the most kind and the most merciful, who gives me the power to complete this work.

It is a great honour to express my sincere gratitude to **Prof. Dr. Mohamed Awad Mansour** Professor of Tropical Medicine, Faculty of Medicine, Ain-Shams University, for his kind and constant supervision, continuous encouragement and great help. It was not possible for me to finish this work without all his wise instructions and his deep clear ideas and way of thinking. Thanks for his encouraging advices. No words would fulfill my deepest gratitude towards his support.

My deepest thanks to **Dr. Hossam Eldin Mohamed Salem** Lecturer of Tropical Medicine, faculty of Medicine, AinShams University, who I am indebted to and who cared about every detail written down in this work. It was not possible for me to finish this work without all his wise instructions and his deep clear ideas and way of thinking. Thanks for his encouraging advices. No words would fulfill my deepest gratitude towards his support.

I am most grateful to **Prof. Dr. Mohammed Abdelrahman Ahmed** Professor of Clinical pathology, Faculty of Medicine, Alexandria University, for his great help and constant guidance, which have enabled me to accomplish this work.

Lastly I wish to express my deep thanks to all staff and colleagues of Tropical Medicine Department, Faculty of Medicine, Ain-Shams University and Alexandria University Hospital for their kind help.

List of Contents

Title	Page
Introduction	
Aim of the Work	
Review of Literature	
Chapter (1):Chronic Hepatitis C (CHC)	
Prevelance of HCV	5
Modes of transmission of HCV	7
Immunopathogenisis of HCV infection	19
Clinical manifestation	22
Liver cirrhosis	33
Hepatocellular carcinoma	40
Diagnosis of HCV	44
Chapter (2): Calprotectin	
Subjects and Methods	67
Results	
Discussion	96
Summary	
Conclusions & Recommendations	
References	
Arabic Summary	

LIST OF ABBREVIATIONS

ALT	Alanine Aminotransferase
AST	Aspartate Aminotransferase
Anti-LKM1	Anti Liver Kidney Muscle 1
anti-HCV	HCV antibody
ANA	Antinuclear Antibodies
ASMA	Anti Smooth Muscle Antibodies
ANCA	Anti-Nuclear Cytoplasmic Antibodies
BMI	Body Mass Index
bDNA	Branched DNA
CTL	Cytotoxic T lymphocytes
СНС	Chronic hepatitis C
ELISA	Enzyme Linked Immunoabsorbent Assay
ESR	Erythrocyte sedimentation rate
FCCs	Fecal calprotectin concentrations
GGT	Gamma-glutamyl transferase
HLA	Human Leukocytic Antigen
HIV	Human Immunodeficiency Virus
HBV	Hepatitis B Virus
НСС	Hepatocellular Carcinoma
HCV	Hepatitis C virus
IL	Interleukin
MHC	Major Histocompatibility Complex
MELD	Model for End Stage Liver Disease
NAFLD	Nonalcoholic fatty liver disease
PCR	Polymerase Chain Reaction
RF	Rheumatoid Factor
RIBA	Recombinant Immunoblot Assay
ROC	Receiver Operating Characteristic

S	Significant
SD	The standard deviation
TLC	Total leukocytic count
TNF-α	Tumor Necrosis Factor alpha
ΤΝΓ-γ	Tumor Necrosis Factor gamma
WBCs	White blood cells

LIST OF FIGURES

Figure		Page
(1)	Comparison between the studied groups according to FCCs	87
(2)	ROC curve for FCCs with cases and control group	93
(3)	ROC curve for Diagnostic validity test for FCCs with A and B group	94
(4)	ROC curve for Diagnostic validity test for FCCs with B and C group	95

LIST OF TABLES

Table	Tables in review	Page
(1)	Prevalence of clinical extrahepatic manifestations in 321 patients with chronic HCV infection	32
(2)	Child Pugh Score Interpretation	57
	Tables in results	
(1)	Comparison between the studied groups according to demographic data	81
(2)	Comparison between the studied groups according to manifestations of hepatic decompensation	82
(3)	Comparison between the studied groups according to biochemical data	83
(4)	Comparison between the studied groups according to ultrasonographic ascites	85
(5)	Comparison between the studied groups according to S. ammonia	86
(6)	Comparison between the studied groups according to FCCs	87
(7)	Correlation between FCCs with age	88
(8)	Correlation between FCCs with liver function tests	88
(9)	Relation between FCCs and previous GIT bleeding in each studied group	89
(10	Correlation between FCCs with WBCs, ESR and serum ferritin in each studied group	90
(11	Correlation between FCCs and S.amonia	90

Table	Tables in review	Page
(12	Relation between FCCs and CRP in each studied group	91
(13	Correlation between FCCs with HE in each studied group	92
(14	Diagnostic validity test for FCCs with cases and control group	93
(15	Diagnostic validity test for FCCs with A and B group	94
(16	Diagnostic validity test for FCCs with B and C group	95

Relation between fecal calprotectin concentration and severity of hepatitis c (HCV) related chronic liver disease

Protocol of Thesis
Submitted for Partial Fulfillment of Master Degree
In Tropical Medicine

By
Amr Eltaher Elsaleh Daifalla
M.B.B.CH
Alexandria University

Under Supervision of

Prof. Dr. Mohamed Awad Mansour

Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Dr. Hossam Eldin Mohamed Salem

Lecturer of Tropical Medicine Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2013

INTRODUCTION

Egypt has one of the highest prevalence rates of hepatitis C virus (HCV) infection in the world. The HCV epidemic appears to have been initiated by vigorous public-health campaigns using intravenous tartar emetic from the 1950s until 1982 to eradicate schistosomiasis (*Frank et al., 2000*). This iatrogenic mode of infection has now resulted in a high incidence of hepatic morbidity and mortality from the late complications of HCV infection, such as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) (*Strickland et al., 2002; El-Zayadi et al., 2005*).

Complications of liver cirrhosis especially hepatic encephalopathy represent a major impact among hepatic patients. The prevalence of hepatic encephalopathy (HE) in patients with liver cirrhosis is considered high and can be diagnosed in up to 80% of all cirrhotic patients (*McPhail et al 2010*). Another study demonstrated that bacterial overgrowth is a responsible factor for minimal hepatic encephalopathy in cirrhotic patients (*Gupta. et al 2010*).

From the pathophysiological point of view, numerous alterations in intestinal flora, mucosal barrier functions and immunological defense mechanisms occur in cirrhotic patients (Wiest et al 2005); this leads to bacterial overgrowth ranging from 30% to 64% and seems to represent one of the main factors to trigger bacterial translocation (Bauer et al 2002, Gunnarsdottir et al 2003). The gut flora and bacterial translocation play an important role in the pathogenesis of certain complications of cirrhosis like hepatic encephalopathy (Garcia et al 2004).

Calprotectin is a calcium and zinc-binding peptide, proposed as a biomarker for various inflammatory diseases due its potential role in pathophysiology of inflammation and associated outcomes like tissue destruction, apoptosis and growth impairment. As an acute phase reactant, calprotectin increases more than 100 folds during inflamed conditions (*Golden et al 1996*).

Calprotectin is found in monocytes (*Rammes et al 1997*), keratinocytes (*Johne et al 1997*), muscle tissue (*Mortensen et al 2008*) and infiltrating tissue macrophages (*Newton et al 1998*). Calprotectin is also found abundant in neutrophils

(*Boussac et al 2000*) and it constitutes 30-60% of the cytosolic proteins (*Hessian et al 1993*).

Once get stimulated by an injury or cell disruption, neutrophils and monocytes start secreting calprotectin into the extra cellular fluid (*Stritz al 2004*). Accordingly, the presence of fecal calprotectin quantitatively relates to intestinal neutrophil migration (*Vermeire et al 2006*) and is therefore, it may be considered as a valid marker of intestinal inflammation (*D' Inca et al 2008*). As the gastrointestinal tract of cirrhotic patients shows various alterations of its mucosal barrier including infiltrates of neutrophils, calprotectin might be a promising diagnostic parameter to diagnose the onset of hepatic encephalopathy (*Gundling et al 2011*).

Aim of the Work

This study aims to assess the relation between fecal calprotectin concentration and severity of HCV related chronic liver disease.

Patients and Methods

Patients:

Study design: Prospective study.

Sample size: Sample size 50 cases.

This study will be performed in Ain shams university hospital and Alexandria university hospital.

The enrolled patients will be divided into 2 groups:

• **Group 1:** 30 patients with HCV related chronic liver disease who will be admitted to the hospital will be invited to enter this study.

• **Group 2:** 20 of healthy Control group.

Informed consent will be obtained from all patients who will be included in the study.