TOTAL VERSUS SUBTOTAL THYROIDECTOMY IN NODULAR GOITER

Essay

Submitted for the Partial Fulfillment of Master degree in

General Surgery

Presented By

Ahmed Momtaz Abbas

M.B.B.ch

Faculty of Medicine, Alexandria University
Under supervision of

Prof.Dr. Tarek Ismail Ouf

Professor of General Surgery
Faculty of Medicine, Ain Shams University

Dr.Mohamed El Sayed El Shinawi

Ass. Professor of General Surgery

Faculty of Medicine, Ain Shams university

Faculty of Medicine

Ain Shams University

الاستئصال الكامل والغير كامل للتضخم العقدي للغدة الدرقية

رسالة توطئه للحصول على درجة الماجستير في الجراحة العامة مقدمة

الطبيب/أحمد ممتاز عباس

بكالوريوس الطب والجراحة كلية الطب-جامعة الإسكندرية تحت إشراف الأستاذ الدكتور/طارق إسماعيل عوف أستاذ الجراحة العامة كلية الطب-جامعة عين شمس

> الدكتور/محمد السيد الشناوي أستاذ مساعد الجراحة العامة كلية الطب-جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس

Aim of The work

This study aims to show the different modalities in the management of Nodular Goiter and highlight the advantages and disadvantages of Total and Subtotal thyroidectomy.

ACKNOWLEDGMENT

I would like to express my supreme gratitude and respect to my imminent professor Dr. Tarek Ismail Ouf Professor of General Surgery, Faculty of Medicine, Ain Shams University for his kind advice, constant supervision, meticulous revision and constructive criticisms of the essay.

I am truly indebted to my professor Dr. Mohamed El Sayed El Shinawi, Ass. Professor of General Surgery, Faculty of Medicine, Ain Shams university for his honest assistance, generous help and marvelous attitude in guiding me.

Lastly, a lot of thanks to my wife and my family for their great cooperation and help to me.

List of abbreviations

AF: Atrial Fibrillation

AIDS: Acquired Immunodeficiency Syndrome

ANP: Atrial Natriuretic Peptide

BMNG: Benign Multi Nodular Goiter

BNP: Brain Naturiuretic Peptide

CFDS: Color Flow Doppler Ultrasonography

CG: Chorionic Gonadotrophin

CHF: Congestive Heart Failure

CT: Conventional Thyroidectomy

DIT: Diiodothyronine

DTC: Differentiatedthyroid Cancer

EBSLN: External Branch Of The Superior Laryngeal Nerve

EBVS: Electrothermal Bipolar Vessel Sealer

ED: Energized Dissection

EGF: Epidermalgrowth Factor

EOM: Extraocular Muscle Involvement

Fdg: F-\^ Fluorodeoxyglucose

FNA: Fine-Needle Aspiration Biopsy

FNAC: Fine-Needle Aspiration Cytology

GERD: Gastroesophageal Reflux Disease

GO: Graves' Orbitopathy

IGF: Insulin-Like Growth Factors

ILP: Interstitial Laser Photocoagulation

IOPTH: Intraoperative Assessment Of Parathyroid

ITA: Inferior Thyroid Artery

LH: Lutenizing Hormone

MCHA: Antimicrosomalhemagglutination Antibody

MEN: Multiple Endocrine Neoplasia

MIT: Mono Iodothyronine

MNG: Multi Nodular Goiter

MTC: Medullary Thyroid Carcinoma

NIS: Sodium/Iodide Symporter

PA: Parathyroid Tissue Autotransplantation

PDUS: Powerdoppler Ultrasound

PEI: Percutaneous Ethanol Injection

Pet: Positron Emission Tomography

Pi: Pulsatilityindex

PPV: Positive Predictive Value

PTC: Papillary Thyroid Carcinoma

PTH: Parathyroid Hormone

PTU: Propylthiouracil

RAI: Radioactive Iodine

RI: Resistance Index

RLN: Recurrent Laryngeal Nerve

RSG: Retrosternal Goiter

Rtsh: Recombinant Thyroid-Stimulating Hormone

SHBG: Sex Hormone-Binding Globulin

SPECT: Tc-99 m Pertechnetate Single Photon Emission

Computed Tomography

Sttx: Subtotal Thyroidectomy

SUV: Standardized Uptake Value

Tr: L-Triiodothyronine

T:: Tetraiodothyronine,

Tbab: Thyroid Blocking Antibodies

Tbii: Thyrotrophin Binding-Inhibiting Immunoglobulins

TEG: Tracheoesophageal Groove

Tg: Thyroglobulin

TGI: Thyroid Growth Immunoglobulins

TO: Thyroid Ophathalmopathy

TRH: Thyrotropin-Releasing Hormone

Tsab: Thyroid-Stimulating Antibody

TSH: Thyroid Stimulating Hormone

TSI: Thyroid Stimulating Immunoglobulins

TTF: Thyroid-Specific Transcription Factors

Ttx: Total Thyroidectomy

TV: Thyroid Volume

VAT: Videoassisted Thyroidectomy

Contents

Introduction	١
Aim Of The Work	٣
Review Of Literature	٤
Chapter one	
Pathology of thyroid gland	٤
Chapter two	
Clinical picture of nodular goiter	٣٦
Chapter three	
Investigations of nodular goiter:	٥٦
Chapter four	
Management of nodular goiter:	٨٣
Summary	177
References	170
Arabic Summary	

List of figures

Figure :	Cross section of multimodal goiter.				
Figure 7:	Extreme thyroid hyperplasia in Graves				
	'disease,	١٦			
Figure 7:	Hashimoto's thyroiditis	77			
Figure ::	Female patient with moderately severe				
	GO.	٤٢			
Figure :	Dermopathy of Graves' Disease	٤٣			
Figure 7:	Male patient with moderately severe GO.	٥,			
Figure ^{\(\gamma\)} :	Male patient with moderately severe GO.				
Figure [^] :	Approach to Establishing the Diagnosis in				
	a Patient with Clinical Manifestations of				
	Hyperthyroidism	٦٦			
Figure 4:	Coronal slice of the whole-body F-\^ FDG				
	PET scan	77			
Figure V:	Fine-needle aspiration biopsy of thyroid				
	nodule	٧٩			
Figure \\:	Algorithm for the Use of Antithyroid Drugs				
	among Patients with Graves' Disease	97			
Figure 17:	The thyroidectomy flap has been raised and				
	the strap muscles retracted bilaterally	١٢٥			
Figure ۱۳:	Endoscopic thyroidectomy	١٤٠			

Figure \\\\\\:	Algorithm to identify Patients at Low Risk					
	for	the	Development	of	Significant	
	Hypocalcemia after Total Thyroidectomy					1 27
Figure \o:	The	coursi	ing direction of t	he R	LN	100

List of Tables

Table ('):	Causes of Thyrotoxicosis			
Table (۲):	The Bethesda System for Reporting			
	Thyroid Cytopathology	۲٨		
Table(♥):	The main clinical features of thyroid			
	ophathalmopathy	٤٩		
Table(٤):	Thyroid test values and interpretations	٥٩		
Table (°):	Application of Thyroid Ultrasonography	٦٨		
Table (٦):	Broad Categories of Fine-Needle			
	Aspiration (FNA)	YY		
Table (Y):	Possible Factors Influencing			
	Hypothyroidism	۸٧		
Table (^):	Treatment of graves' ophthalmopathy	١١٦		

Introduction

Goiters affect °-\% of the world's population and the second most common endocrinopathy worldwide. In some endemic areas, up to half of the population has enlarged thyroid gland (*Muller et al.*, 2001).

Multinodular goiter generally occurs as a growth or an asymptomatic thyroid gland detected in a routine medical examination or noted by the patient, family, or friends (*Antonio Rios et al.*, 2005).

Toxic multinodular goiter (MNG) is thyroid gland enlargement that has at least two autonomously functioning thyroid nodules secreteing excessive amounts of the thyroid hormone, which produce the classic signs and symptoms of hyperthyroidism (*Cooper*, 2003).

The incidence of thyroid cancer in multinodular goiter without any previous suspicion of malignancy was found to be $\lambda, \forall \lambda$. (Yasmin Giles et al., $\forall \lambda, \forall \lambda$).

Surgical options for the management of MNG include bilateral subtotal thyroidectomy (BST), near total thyroidectomy (NTT-Total on the dominant side and subtotal lobectomy on the contralateral side) and total thyroidectomy (TT). (*Serdar Ozbas et al.*, 2005).

Total thyroidectomy & Near total thyroidectomy are safe, effective approaches in the treatment of toxic MNG, preventing recurrence of thyrotoxicosis and reoperation for incidentally found thyroid cancers. (*Orhan Alimohn et al.*, 2005).

Total thyroidectomy was performed by extra capsular dissection to remove both thyroid and pyramidal lobes and to identify recurrent laryngeal nerve or monitoring its function and preserving the parathyroid glands. In the NTT, lobectomy was performed on the larger or more nodular thyroid lobe with contralateral subtotal resection leaving an average of \-\forall g of the thyroid tissue. Approximately \(\xi-\gamma\) g of the thyroid was left after BST. (Serdar Ozbas et al., 2005).

The three main complications following thyroid surgery include RLN palsy, hypoparathyroidism and postoperative heamorrhage. Permanent injury to the RLN was defined as palsy of the vocal cords, diagnosed by an otolarygologist using either indirect laryngoscopy or videolarygostroboscopy, which lasted for more than six months. A temporary one recoveres within six months. Temporary hypoparathyroidism was defined as a fall in corrected serum calcium concentration below ^ mg /dl. Permanent hypoparathyroidism was defined as need for oral vitamin D and / or calcium supplements six months following surgery to maintain normal calcium concentration. (*Khadra M et al.*, 1992).

Chapter One

Pathology of thyroid gland

Nearly all disorders of the thyroid result in some swellings of the gland itself and the non-specific term goiter embraces them all. In clinical practice a working classification based on whether the gland is toxic or not and the nature of the enlargement is helpful. This enables a diagnosis to be made and appropriate action taken in the majority of patients (*Peterson et al.*, 2000).

Non Toxic Goiter:

1-Simple goiter:

Physiological goiter:

Enlargement of the thyroid gland occurs during pregnancy, puberty, and menopause. This is due to increase the physiological demand for thyroid hormone or as a response to growth hormone and changes in estrogen level. Increased levels of TSH are believed to play a role in the process (*Davis and Davis*, *2001*).

■ Endemic goiter (Primary iodine / deficiency): (Hollowell et al., 1998)

The most common worldwide cause of endemic nontoxic goiter is iodine deficiency. However, in patients with