

A Comparative Study of Two Different Designs of Kennedy Class III Modification 1 in Removable Partial Dentures: Finite Element Analysis

Thesis Submitted to

The Faculty of Oral and Dental Medicine

Cairo University

In partial fulfillment for the requirements of Master Degree in Removable Prosthodontics

By

Heba Ahmed Mohamed Ahmed Saleh

B.D.S 2002

Cairo University

Faculty of Oral and Dental Medicine
Cairo University

2011

Supervisors

Prof. Dr. Amal Mahmoud Ibrahim

Professor of Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

Prof. Dr. Nadia Lashin Soliman

Head of Basic Dental Science Department
Oral and Dental Research Division
National Research Centre

Assist. Prof. Dr. Iman Mohamed Abd El Wahab

Assistant Professor of Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

أ.د/ أمل محمود إبراهيم

أد/ نادية لاشين سليمان

أدم / ايمان محمد عبد الوهاب

:
/
_

Acknowledgment

First of all I would like to thank God who paved the way and only by his will everything can be achieved.

I would to express my deep appreciation to **Prof. Dr. Amal Mahmoud** Professor of Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for her supervision, patience and instruction during the course of the study.

I am deeply grateful to **Prof. Dr. Nadia Lashin**Soliman, Head of Basic Dental Science Department,
Oral and Dental Research Division, National
Research Centre, for her greater assistance in the
preparation of this work. I will remain indebted to her
and never forget her kind help and cooperation.

I would like to express my sincere thanks to Assist. Prof. Dr .Iman Abd El-Wahab, Faculty of Oral and Dental Medicine, Cairo University for her constructive cooperation and valuable supervision throughout the study.

Special thanks to **Dr. Ahmed El Ragi,** Lecturer of Civil Engineering, Fayoum University, for his great support, generous help and guidance, owing him all that I learned in the field of finite element analysis.

I would like to acknowledge the whole Staff members of Fixed and Removable Prosthodontic Department, Oral and Dental Research Division, National Research Centre, for their encouragement and help specially **Prof. Dr. Magda Ramzy**, Head of Fixed and Removable Prosthodontic Department and **Dr. Amany Ramadan**, Researcher in Fixed and Removable Prosthodontic Department.

Last but not least, I would like to thank my dearest sister, Assist. Prof. Dr.Ola Ahmed saleh, for her cooperation and support in this study.

To my Caring Mother

Soul of my Father

Beloved Sisters

Dear Friends

For their love and support

List of Contents

Content	Page
Title Page	
Supervisors	
Acknowledgement	I
Dedication	lii
Contents	iv
List of Tables	vii
List of Figures.	viii
Introduction	1
Review of Literature	
1. Bounded Saddles Removable Partial Dentures	3
- Classification of Class III Partial Edentulism	3
- Problems Facing Bounded Saddle Removable Partial Dentures	7
- Methods of Solving Bounded Saddle Problems	10
- Principles of the Design for Bounded Saddles	17
2. Retainers of Removable Partial Denture	18
- Types of direct retainers	24
- Types of direct retainers for bounded saddles:	24
- Extra-coronal clasp retainers	25
A)Circumferential clasp	25
i) Akers clasp	25
ii) Back action clasp	27
iii) Reverse back action clasp	27
iv) Ring clasp	28

B) Bar clasp: RPI clasp	28
- Extra-coronal precision attachments	30
-Intra-coronal precision attachments	30
- Telescopic Retainers	31
Modification of telescopic retainer	33
Advantages of telescopic retainers	34
Disadvantages of telescopic retainers	36
3. Forces Acting on Removable Partial Dentures	37
-Force Distribution on Removable Partial Dentures	41
4. Stress Analysis	43
- Types of Stress Analysis	44
- Finite Element Analysis	49
Equivalent stresses (von Misses')	52
Methods of Finite Element Stress Analysis	53
Advantages and limitations of Finite Element Stress Analysis	54
5. Multislice CT Scanning	55
Image Quality	57
Aim of The Study	59
Material and Methods	60
1. Models Selection	60
2. Models Preparation	61
3. Computed Tomography Scanning of The Models	70
4. Computerized Three Dimensional Modeling	74
5. Finite Element Analysis of the Models	
Results	90

Discussion	
1. Discussion of Material and Methods	
2. Discussion of Results	117
Summary	124
Conclusions	125
References	126
Arabic Summary	

List of tables

Table		Page
Material and Methods		
Table (1):	Scanning parameters of C.T images	71
Table (2):	Material properties	86
<u>Results</u>		
Table (3):	Stresses induced in the canine abutment of both models.	91
Table (4):	Stresses induced in the second molar abutment of both	
	models	95
Table (5):	Stresses induced in supporting bone of both models	98
Table (6):	Stresses induced in acrylic teeth and denture base of both	
	models	101
Table (7):	Stresses induced in metal framework of both models	104
Table (8):	Displacement induced in both models	108

List of Figures

Figure		Page
<u>Material a</u>	nd Methods	
Figure (1):	Mandibular acrylic jaw model represent Kennedy class III modification 1	60
Figure (2):	The primary copings cemented to the abutments	65
Figure (3):	The wax pattern of model I	66
Figure (4):	The wax pattern of model II on the primary copings	66
Figure (5):	Partial denture framework retained by RPI clasps on the canines and Aker clasps on the second molars	68
Figure (6):	Partial denture framework retained by parallel sided telescopic crowns	69
Figure (7):	The fitting surface of RPD of model II	69
Figure (8):	C.T scan machine	71
Figure (9):	Work Station Desktop	72
Figure (10):	C.T Images	73
Figure (11):	Editing the 3D images	76
Figure (12):	Calculating the 3D images	76
Figure (13):	Metal framework of model I before and after meshing	78
Figure (14):	Metal framework of model I attached to the abutments before and after meshing	78
Figure (15):	Finished metal framework of model I	79
Figure (16):	3D of model I with metal framework	80
Figure (17):	3D mask of the RPD of model I attached to the abutments	80

Figure		Page
Figure (18):	3D mask of model II with metal framework	81
Figure (19):	3D mask of model II with RPD	81
Figure (20):	The finished denture of model I before exporting to Ansysis software	82
Figure (21):	The finished denture of model II before exporting to Ansysis software	82
Figure (22):	Finite element resultant geometry of model I	83
Figure (23):	Finite element resultant geometry of model II	84
Figure (24):	Finite element geometry of model II with the primary copings .	84
Figure (25):	Site of load application and boundary condition	87
Figure (26):	The solving equation relationship between forces, displacement, stress and strain	88
Results		91
Figure (27):	The stresses induced in the canine abutments of both models during loading	91
Figure (28):	Tensile stress distribution in canine abutments	92
Figure (29):	Compressive stress distribution in canine abutments	92
Figure (30):	von Misses stress distribution in canine abutments	93
Figure (31):	The stresses induced in the second molar abutments of both models during loading	95
Figure (32):	Tensile stress distribution in the second molars abutments	96
Figure (33):	Compressive stress distribution in the second molars abutments	96

Figure		Page
Figure (34):	von Misses stress distribution in the second molars abutments	97
Figure (35):	The stresses induced in the supporting bone of both models during loading	98
Figure (36):	Tensile stress distribution in the supporting bone	99
Figure (37):	Compressive stress distribution in the supporting bone	99
Figure (38):	von Misses stress distribution in the supporting bone	100
Figure (39):	The stresses induced in the acrylic teeth and the denture base of both models during loading	101
Figure (40):	Tensile stress distribution in the denture base and the acrylic teeth	102
Figure (41):	Compressive stress distribution in the denture base and the acrylic teeth	102
Figure (42):	von Misses stress distribution in the denture base and the acrylic teeth	103
Figure (43):	The stresses induced in the metal frame work of both models during loading	104
Figure (44):	Tensile stress distribution in the metal framework	105
Figure (45):	Compressive stress distribution in the metal framework	105
Figure (46):	von Miss stress distribution in the metal framework	106
Figure (47):	The displacement induced in both models during loading	108
Figure (48):	The displacement in metal framework of model I	109
Figure (49):	The displacement in metal framework of model II	109