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In the last decades, the MHD stability of fluids problems 

have received great attention for their crucial applications in 

various domains of science. Here we study the stability of 

different geometrical models analytically and numerically 

taking into account the effect of different external forces such 

as electromagnetic, surface tension, selfgravitational,… etc.  

 

In Chapter (I), we did write down about the concept of 

stability with a brief discussion of the techniques which may be 

used in stability problems analysis focusing on the normal 

mode method. Also we did write down the basic 

hydrodynamics and magnetohydrodynamics (MHD) equations 

which are essential for formulating all stability problems. 

Different boundary conditions at the fluid interfaces are 



explained. Finally, we review on some reported works in the 

hydrodynamics and magnetohydrodynarmics stability of jets 

and other models.  Survey concerning some discussion about 

superposed fluids have been carried out. 

 

         In Chapter (II), The hydromagnetic instability of 

compressible hollow jet involved with surface tension is 

discussed in the axisymmetric mode for all short and long 

wavelengths. The dispersion relation is derived and discussed 

analytically and numerically. The axial magnetic fields inside 

the gas and liquid regions have stabilizing effects for all short 

and long wavelengths. This is physically interpreted that the 

axial field exerts a strong effect which causes the bending and 

twisting of the magnetic lines of force. The compressibility 

effects need careful treating. Here the incompressible fluid 

result is obtained as a  tends to  (a is the sound speed in the 

fluid). For finite value of a  (i.e. compressible fluid), the 

temporal amplification is larger than that in the incompressible 

case. So the compressibility has a strong destabilizing tendency 

and increase the unstable domains. The streaming is 

destabilizing for all short and long wavelengths. The capillary 

force is destabilizing for small wave numbers while it is 

stabilizing for all the rest wavelengths. Whatever the stabilizing 

effect of the electromagnetic force is strong enough, the 



capillary, streaming and compressible instability effects could 

not be suppressed and the model will be always unstable. 

The results of this problem have been published in 3rd 
International Conference on Engineering Mathematics and 
Physics, Military Technical College, Cairo, Egypt, May 16-18, 
(2006) pp.47-66. 

 

         In Chapter (III), The self gravitating instability of fluid 

cylinder penetrated by toroidal varying magnetic field internally 

has been developed. Upon using the linear perturbation 

technique, the problem is studied, the dispersion relation is 

established and discussed. Some reported works are recovered 

from the present general data as limiting cases with suitable 

simplifications.. The electromagnetic force has stabilizing 

effect for all perturbed wavelengths. The uniform magnetic 

field penetrated in the tenuous medium has no direct influence 

on the stability of the model. The self gravitating force is 

stabilizing for very short wavelengths but it is destabilizing 

otherwise . The magnetic field influence decreases the self 

gravitating destabilizing character but never suppressed it. This 

is due to the fact that the gravitational instability of sufficiently 

long waves will persist and the reason for that lies in the 

logarithmic singularity of the gravitational potential energy for 

infinite wavelengths. 

The results of this problem have been published in Journal of 
the Faculty of Education, Ain Shams University, Cairo, 
Egypt,31 (2006) 427-438. 
 



 
         In chapter (IV),   we   extend   our   previous  recent  work  

(Radwan and Hussain (2006)) to investigate the non-linear 

stability of a liquid cylinder  acting upon the combined effect of 

the inertia, capillary and electromagnetic forces, via the 

technique used by Callebaut (1971). This is also to examine the 

effect of the electrical conductivity on the instability of such 

model. In view of some practical applications in industries (e.g. 

the correction due to non-linear terms) extensions are 

considered. Moreover, the results were very rewarding 

theoretically also because several unexpected features turned up 

as well in the linear theory as in the non-linear one.  
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CHAPTER   I 

INTRODUCTION 

 

In this chapter we discuss the concept of stability given by 

Chandrasekhar(1981). A brief discussion of the techniques 

which may be used in stability problems analysis is introduced 

here. Also we present the basic hydrodynamics and 

magnetohydrodynamics (MHD) equations which are essential 

for formulating any stability problem. Different boundary 

conditions at the fluid interfaces are explained. Finally, we 

review on some reported works which are the foundation of the 

present work. 

 

I.1   Stability Concept 

Here we follow Chandrasekhar ( 1981)  for describing the 

stability concept. Suppose we have a hydrodynamic system 

which is in a stationary state, i.e. in a state in which none of the 

variables describing it is a function of time (whether it is 

initially at rest or streaming). Let x1, x2,………xj be a set of 

parameters which define this system. These parameters may 

include geometrical parameters (such as the dimensions of the 

system); parameters characterizing the velocity of the fluid; 

parameters characterizing the forces acting on the system such 

as electromagnetic force, pressure gradient; and others. In 
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considering the stability of such a system we seek to determine 

the reaction of the system upon small disturbances. If the 

system is disturbed and the disturbance gradually die down, in 

this case the system is stable with respect to the particular 

disturbance. On the other side, if the disturbance grows in 

amplitude in such a way that the system progressively departs 

from the initial state and never reverts to it, we say that it is 

unstable. It should be noticed that a system cannot be 

considered stable unless it is stable with respect to every 

possible disturbance to which it can be subjected. In other 

words, stability must imply that there exists no mode of 

disturbance for which it is unstable. 

If all initial states are classified as stable or unstable 

according to the criteria stated, then in the space of parameters, 

x1, x2,……… xj, the locus which separates the two classes of 

states defines the states of marginal stability of the system. By 

this definition, a marginal state is a state of neutral stability. 

In studying the stability of a hydrodynamic or 

hydromagnetic problem, it is often convenient to suppose that 

all parameters of the system, save one, are kept constant while 

the chosen one is continuously varied. We shall then pass from 

stable to unstable states when the particular parameter we are 

varying takes a certain critical value. We may say that 

instability occurs at this value of the chosen parameter while all 

the others have their reassigned values. 
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The states of marginal stability can be one of two kinds 

corresponding to the two ways in which the amplitudes of a 

small disturbance can grow or be damped: they can grow (or be 

damped) periodically, or they can grow (or be damped) by 

oscillations of increasing (or decreasing) amplitude. In the 

former case, the transition from stability to instability takes 

place via a marginal state exhibiting a stationary pattern of 

motions. In the latter case, the transition takes place via a 

marginal state exhibiting oscillatory motions with a certain 

definite characteristic frequency. 

1.2 Applications of  Hydrodynamic and MHD Stability 

There are many applications of hydrodynamic and MHD 

stability in several fields of science such as  

Geophysics 

The fluid of the core of the Earth and other planets is theorized 

to be a huge MHD dynamo that generates the Earth’s magnetic 

field due to the motion of the liquid iron. 

Astrophysics 

MHD applies quite well to astrophysics since 99% of baryonic 

matter content of the universe is made of plasma, including 

stars, the interplanetary medium, nebulae and jets, stability of 

spiral arm of galaxy,…etc.  Many astrophysical systems are not 

in local thermal equilibrium, and therefore require an additional 

kinematic treatment to describe all the phenomena within the 

system. 
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Engineering Applications 

MHD and hydrodynamic stability has many forms  in 

engineering sciences include oil and gas extraction process, gas 

and steam turbines, MHD power generation systems and 

magneto- flow meters,….etc.   

  

1.3 Analysis in Terms of Normal Modes 

There are several methods for solving the stability 

problems. Only some of them are mentioned here: the energy 

principle method, multiple time scales method, the variations 

principle method and the normal mode method. Of course, 

every method has its advantages and disadvantages. For 

example, in the variations principle method we are only able to 

say that the model is stable or not, while in the normal mode 

method we could determine exactly the unstable domains and 

the critical value xc of the longitudinal dimensionless 

wavenumber. In our work, we’ll use the normal mode technique 

for the perturbations analysis . In this section we present a brief 

discussion of this technique. 

The mathematical treatment of a stability problem 

generally starts from an initial flow which represents a 

stationary state of the system. By assuming that the various 

physical variables describing the flow suffer infinitesimal 

increments, we first obtain the equations governing these 

increments. In obtaining these equations from the relevant 
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equations of motion, we neglect all products and powers higher 

than the first of the increments and retain only terms which are 

linear in them. That is why we call it the linear stability theory 

in contrast to non-linear theory in which we need to consider 

them. 

As we have mentioned, stability means stability with 

respect to all possible infinitesimal disturbances. So, for 

investigation of stability to be complete, it is necessary that the 

reaction of the system to all possible disturbances must be 

examined. In practice, this is accomplished by expressing an 

arbitrary disturbance as a superposition of certain basic possible 

modes and examining the stability of the system with respect to 

each of these modes. 

 

1.4 Hydrodynamics and Magnetohydrodynamics Basic Equations 

Magnetohydrodynamics is defined as the study of the 

macroscopic interaction of electrically-conducting fluids with a 

magnetic field. In studying the magnetohydrodynamics stability 

of any model, it is important to study the equations governing 

this model which can be classified into two groups of 

equations. The first group is the hydrodynamics equations (the 

equation of motion and the continuity equation) and the second 

group is the equations of Maxwell concerning the 

electrodynamic theory. 
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In this section, these equations are presented in their 

general form and also the special cases are considered. 

1.4.1 Continuity Equation 

Consider a specific mass of fluid whose volume is 

arbitrary chosen. If given fluid mass is followed as it flows, its 

size and shape will be observed to change but its mass will 

remain unchanged. This is the principle of mass conservation 

which applies to fluids in which no nuclear reactions are taking 

place. It should be noticed that the density of individual 

particles. may or may not be conserved, since the volume of a 

particle may change during a motion. The continuity equation, 

in its general form, is given in the form 

0)(  u
dt

d                                                                           (1.1) 

with 

)( 



 u
tdt

d  

where  is the fluid mass density and u is the fluid velocity 

vector. When the fluid under consideration is incompressible, 

that is the volume of each particle remains constant during the 

time of motion. Hence, the density remains constant (d/dt=0), 

then the continuity equation reduces to the form 

0 u                                                                                     (1.2) 

For an irrotational motion, the velocity vector must be 

expressed as a gradient of a potential function, say  . 

Therefore, the velocity vector becomes 
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u .                                                                                    (1.3) 
Consequently, for incompressible-irrotational flow, we have 

02   .                                                                                   (1.4) 

1.4.2 The Vector Equation of Motion 

Consider Navier-Stokes’ equation which for a viscous 

fluid may be written in the form: 

)()( uFP
dt

ud
                                                      (1.5) 

where , u, P are the fluid mass density, velocity vector and 

kinetic pressure,  the kinematical coefficient of viscosity 

(while  called the dynamical coefficient of viscosity), and F 

the external acting force per unit volume of the fluid. This 

external force could be the self-gravitating force, 

electromagnetic force or any other external force acting on the 

fluid. 

It should be mentioned here that for an incompressible 

fluid and making use of the continuity equation (1.2) with the 

vector relation 

Navier – Stokes’ equation is simplified to 

 uFP
dt

ud 2)(                                                             (1.6) 

1.4.3    Maxwell’s Equations 

The electrical conductivity of the fluid and the prevalence 

of magnetic fields contribute to effects of two kinds: first, by 

the motion of electrically conducting fluid across the magnetic 

lines of force, electric currents are generated and the associated 
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magnetic fields contribute changes in the existing fields; and 

second, the fact that the fluid elements carrying currents 

transverse magnetic lines of force contributes to additional 

forces acting on the fluid elements. With displacement currents 

ignored, Maxwell’s equations are: 

         0 H                                                                           (1.7) 

         0 H                                                                          (1.8) 

         
t

H
E




                                                                    (1.9) 

where E and H are the intensities of the electric and the 

magnetic fields,  and µ is the magnetic permeability. 

If u is the fluid velocity vector, the experience electric 

field as measured by a stationary observer will not be E, but it 

will be )( HuE    and consequently the current density J is 

given by 

   (1.10) 

where  is the coefficient of electrical conductivity. 

By using equations (1.8) and (1.10) for equation (1.9), the 

equation of the magnetic field could be obtained in the general 

form  

)()( HHu
dt

Hd
                                                   (1.11) 

where   is the resistivity coefficient. 

Combining Maxwell equations with the equation of 

motion and the equation of continuity, we may conclude that 

when a fluid moves in the presence of a magnetic field H or 

)]([ HuEJ  
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alternatively a magnetic field penetrates a fluid, an electric 

current J is produced. Such current will interact with the 

original magnetic  field  H   producing  electromagnetic  force  

 (J ^ H) influences on the fluid. This force has a very 

interesting goal and plays an important role in stabilizing or 

destabilizing the fluid models. 

Therefore, the basic equations governing an 

incompressible, viscous and resistive fluid pervaded by a 

magnetic field are: 

HHuFP
dt

ud
 )()( 2                               (1.12)            

0 u                                                                         (1.13) 

0 H                                                                       (1.14) 

)()( HHu
dt

Hd
                                          (1.15) 

 

1.5  Boundary Conditions 

Based on the normal mode technique, the basic equations 

governing the model under consideration must be solved for the 

unperturbed state and also for the perturbed state. These 

solutions must satisfy certain conditions across the boundaries 

of the model in order to determine the constants of integration 

of the differential equations of the fluid model. These 

conditions are known as boundary conditions and they may be 

some of the following. 
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1. The kinematic boundary conditions which states that the 

normal component of the velocity of the fluid must be 

continuous and simultaneously compatible with the 

velocity of the deformed interface. 

2. The normal component of the magnetic field must be 

continuous across the boundary interface. 

3. The continuity of the self gravitating potential and its 

derivative across the perturbed interfaces. 

4. The compatibility condition that the total pressure must be 

continuous across the deformed surface. 

 

1.6  On Reported Works 

In this section we turn our attention to a large and 

important group of problems: the stability of jets and 

superposed fluids for its applications in science. The classical 

example of jets is the instability of water issuing from a nozzle 

as a cylindrical jet. The cause of this instability, as Rayleigh 

(1945) first showed, is the surface tension which makes the 

infinite cylinder an unstable figure of equilibrium and entails its 

breaking into separate pieces with a total surface area which is 

less than that of the original cylinder. Plateau (1873) also 

concluded that the model is absolutely unstable only to 

axisymmetric perturbations whose wavelength is longer than 

the circumference 2R of the jet (radius R) and stable to all 

other perturbations. 


