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ABSTRACT
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Specialty : Engineering Physics and Mathematics
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In the last decades, the MHD stability of fluids problems
have received great attention for their crucial applications in
various domains of science. Here we study the stability of
different geometrical models analytically and numerically
taking into account the effect of different external forces such

as electromagnetic, surface tension, selfgravitational,... etc.

In Chapter (1), we did write down about the concept of
stability with a brief discussion of the techniques which may be
used in stability problems analysis focusing on the normal
mode method. Also we did write down the basic
hydrodynamics and magnetohydrodynamics (MHD) equations
which are essential for formulating all stability problems.

Different boundary conditions at the fluid interfaces are



explained. Finally, we review on some reported works in the
hydrodynamics and magnetohydrodynarmics stability of jets
and other models. Survey concerning some discussion about

superposed fluids have been carried out.

In Chapter (II), The hydromagnetic instability of
compressible hollow jet involved with surface tension is
discussed in the axisymmetric mode for all short and long
wavelengths. The dispersion relation is derived and discussed
analytically and numerically. The axial magnetic fields inside
the gas and liquid regions have stabilizing effects for all short
and long wavelengths. This is physically interpreted that the
axial field exerts a strong effect which causes the bending and
twisting of the magnetic lines of force. The compressibility
effects need careful treating. Here the incompressible fluid
result is obtained asa tends to « (ais the sound speed in the
fluid). For finite value of a (i.e. compressible fluid), the
temporal amplification is larger than that in the incompressible
case. So the compressibility has a strong destabilizing tendency
and increase the wunstable domains. The streaming is
destabilizing for all short and long wavelengths. The capillary
force is destabilizing for small wave numbers while it is
stabilizing for all the rest wavelengths. Whatever the stabilizing

effect of the electromagnetic force is strong enough, the



capillary, streaming and compressible instability effects could
not be suppressed and the model will be always unstable.

The results of this problem have been published in 3™
International Conference on Engineering Mathematics and
Physics, Military Technical College, Cairo, Egypt, May 16-18,
(2006) pp.47-66.

In Chapter (111), The self gravitating instability of fluid
cylinder penetrated by toroidal varying magnetic field internally
has been developed. Upon using the linear perturbation
technique, the problem is studied, the dispersion relation is
established and discussed. Some reported works are recovered
from the present general data as limiting cases with suitable
simplifications.. The electromagnetic force has stabilizing
effect for all perturbed wavelengths. The uniform magnetic
field penetrated in the tenuous medium has no direct influence
on the stability of the model. The self gravitating force is
stabilizing for very short wavelengths but it is destabilizing
otherwise . The magnetic field influence decreases the self
gravitating destabilizing character but never suppressed it. This
IS due to the fact that the gravitational instability of sufficiently
long waves will persist and the reason for that lies in the
logarithmic singularity of the gravitational potential energy for
infinite wavelengths.

The results of this problem have been published in Journal of
the Faculty of Education, Ain Shams University, Cairo,
Egypt,31 (2006) 427-438.



In chapter (IVV), we extend our previous recent work
(Radwan and Hussain (2006)) to investigate the non-linear
stability of a liquid cylinder acting upon the combined effect of
the inertia, capillary and electromagnetic forces, via the
technique used by Callebaut (1971). This is also to examine the
effect of the electrical conductivity on the instability of such
model. In view of some practical applications in industries (e.g.
the correction due to non-linear terms) extensions are
considered. Moreover, the results were very rewarding
theoretically also because several unexpected features turned up

as well in the linear theory as in the non-linear one.

Keywords:
Magnetohydrodynamics — Stability — Compressible —

Incompressible — Gas Cylinder — Liquid Cylinder-Streaming

— Selfgravitating — Hollow Jet.



CHAPTER |
INTRODUCTION

In this chapter we discuss the concept of stability given by
Chandrasekhar(1981). A brief discussion of the techniques
which may be used in stability problems analysis is introduced
here. Also we present the basic hydrodynamics and
magnetohydrodynamics (MHD) equations which are essential
for formulating any stability problem. Different boundary
conditions at the fluid interfaces are explained. Finally, we
review on some reported works which are the foundation of the

present work.

1.1 Stability Concept

Here we follow Chandrasekhar ( 1981) for describing the
stability concept. Suppose we have a hydrodynamic system
which is in a stationary state, i.e. in a state in which none of the
variables describing it is a function of time (whether it is
initially at rest or streaming). Let X;, Xp,......... X; be a set of
parameters which define this system. These parameters may
include geometrical parameters (such as the dimensions of the
system); parameters characterizing the velocity of the fluid;
parameters characterizing the forces acting on the system such

as electromagnetic force, pressure gradient; and others. In



considering the stability of such a system we seek to determine
the reaction of the system upon small disturbances. If the
system is disturbed and the disturbance gradually die down, in
this case the system is stable with respect to the particular
disturbance. On the other side, if the disturbance grows in
amplitude in such a way that the system progressively departs
from the initial state and never reverts to it, we say that it is
unstable. It should be noticed that a system cannot be
considered stable unless it is stable with respect to every
possible disturbance to which it can be subjected. In other
words, stability must imply that there exists no mode of
disturbance for which it is unstable.

If all initial states are classified as stable or unstable
according to the criteria stated, then in the space of parameters,
X1y X2yueeeennn. X;, the locus which separates the two classes of
states defines the states of marginal stability of the system. By
this definition, a marginal state is a state of neutral stability.

In studying the stability of a hydrodynamic or
hydromagnetic problem, it is often convenient to suppose that
all parameters of the system, save one, are kept constant while
the chosen one is continuously varied. We shall then pass from
stable to unstable states when the particular parameter we are
varying takes a certain critical value. We may say that
instability occurs at this value of the chosen parameter while all

the others have their reassigned values.



The states of marginal stability can be one of two kinds
corresponding to the two ways in which the amplitudes of a
small disturbance can grow or be damped: they can grow (or be
damped) periodically, or they can grow (or be damped) by
oscillations of increasing (or decreasing) amplitude. In the
former case, the transition from stability to instability takes
place via a marginal state exhibiting a stationary pattern of
motions. In the latter case, the transition takes place via a
marginal state exhibiting oscillatory motions with a certain
definite characteristic frequency.

1.2 Applications of Hydrodynamic and MHD Stability

There are many applications of hydrodynamic and MHD
stability in several fields of science such as
Geophysics
The fluid of the core of the Earth and other planets is theorized
to be a huge MHD dynamo that generates the Earth’s magnetic
field due to the motion of the liquid iron.
Astrophysics
MHD applies quite well to astrophysics since 99% of baryonic
matter content of the universe is made of plasma, including
stars, the interplanetary medium, nebulae and jets, stability of
spiral arm of galaxy,...etc. Many astrophysical systems are not
in local thermal equilibrium, and therefore require an additional
kinematic treatment to describe all the phenomena within the

system.



Engineering Applications

MHD and hydrodynamic stability has many forms in
engineering sciences include oil and gas extraction process, gas
and steam turbines, MHD power generation systems and

magneto- flow meters,....etc.

1.3 Analysis in Terms of Normal Modes

There are several methods for solving the stability
problems. Only some of them are mentioned here: the energy
principle method, multiple time scales method, the variations
principle method and the normal mode method. Of course,
every method has its advantages and disadvantages. For
example, in the variations principle method we are only able to
say that the model is stable or not, while in the normal mode
method we could determine exactly the unstable domains and
the critical value x. of the longitudinal dimensionless
wavenumber. In our work, we’ll use the normal mode technique
for the perturbations analysis . In this section we present a brief
discussion of this technique.

The mathematical treatment of a stability problem
generally starts from an initial flow which represents a
stationary state of the system. By assuming that the various
physical variables describing the flow suffer infinitesimal
increments, we first obtain the equations governing these

increments. In obtaining these equations from the relevant



equations of motion, we neglect all products and powers higher
than the first of the increments and retain only terms which are
linear in them. That is why we call it the linear stability theory
in contrast to non-linear theory in which we need to consider
them.

As we have mentioned, stability means stability with
respect to all possible infinitesimal disturbances. So, for
investigation of stability to be complete, it is necessary that the
reaction of the system to all possible disturbances must be
examined. In practice, this is accomplished by expressing an
arbitrary disturbance as a superposition of certain basic possible
modes and examining the stability of the system with respect to

each of these modes.

1.4 Hydrodynamics and Magnetohydrodynamics Basic Equations

Magnetohydrodynamics is defined as the study of the
macroscopic interaction of electrically-conducting fluids with a
magnetic field. In studying the magnetohydrodynamics stability
of any model, it is important to study the equations governing
this model which can be classified into two groups of
equations. The first group is the hydrodynamics equations (the
equation of motion and the continuity equation) and the second
group is the equations of Maxwell concerning the

electrodynamic theory.



In this section, these equations are presented in their
general form and also the special cases are considered.

1.4.1 Continuity Equation

Consider a specific mass of fluid whose volume is
arbitrary chosen. If given fluid mass is followed as it flows, its
size and shape will be observed to change but its mass will
remain unchanged. This is the principle of mass conservation
which applies to fluids in which no nuclear reactions are taking
place. It should be noticed that the density of individual
particles. may or may not be conserved, since the volume of a
particle may change during a motion. The continuity equation,

in its general form, is given in the form

D1 p(9-1)=0 (1.1)

where p is the fluid mass density and u is the fluid velocity
vector. When the fluid under consideration is incompressible,
that is the volume of each particle remains constant during the
time of motion. Hence, the density remains constant (do/dt=0),
then the continuity equation reduces to the form

V-u=0 (1.2)
For an irrotational motion, the velocity vector must be
expressed as a gradient of a potential function, say g.

Therefore, the velocity vector becomes



u=Vve. (1.3)
Consequently, for incompressible-irrotational flow, we have

V=0, (1.4)
1.4.2 The Vector Equation of Motion

Consider Navier-Stokes’ equation which for a viscous

fluid may be written in the form:

p%=—VP+E—(pU)V/\(V/\g) (15)

where p, u, P are the fluid mass density, velocity vector and
Kinetic pressure, v the kinematical coefficient of viscosity
(while pv called the dynamical coefficient of viscosity), and F
the external acting force per unit volume of the fluid. This
external force could be the self-gravitating force,
electromagnetic force or any other external force acting on the
fluid.

It should be mentioned here that for an incompressible
fluid and making use of the continuity equation (1.2) with the
vector relation

Navier — Stokes’ equation is simplified to

p‘i—%=—VP+E+(pu)Vzg (1.6)

1.4.3 Maxwell’s Equations

The electrical conductivity of the fluid and the prevalence
of magnetic fields contribute to effects of two kinds: first, by
the motion of electrically conducting fluid across the magnetic

lines of force, electric currents are generated and the associated



magnetic fields contribute changes in the existing fields; and
second, the fact that the fluid elements carrying currents
transverse magnetic lines of force contributes to additional
forces acting on the fluid elements. With displacement currents

ignored, Maxwell’s equations are:

V-H=0 (1.7)
VAH=0 (18)
V/\E:—,uﬂ (19)

where E and H are the intensities of the electric and the
magnetic fields, and p is the magnetic permeability.

If u is the fluid velocity vector, the experience electric
field as measured by a stationary observer will not be E, but it
will bek+uu~H) and consequently the current density J is
given by
J=Z[E+punH)] (1.10)
where A" is the coefficient of electrical conductivity.

By using equations (1.8) and (1.10) for equation (1.9), the
equation of the magnetic field could be obtained in the general

form

v AUAH) - A (Y AH) (1.11)

where 77 is the resistivity coefficient.
Combining Maxwell equations with the equation of
motion and the equation of continuity, we may conclude that

when a fluid moves in the presence of a magnetic field H or



alternatively a magnetic field penetrates a fluid, an electric
current J is produced. Such current will interact with the
original magnetic field H producing electromagnetic force
u (3 ~ H) influences on the fluid. This force has a very
interesting goal and plays an important role in stabilizing or
destabilizing the fluid models.

Therefore, the basic equations governing an
incompressible, viscous and resistive fluid pervaded by a

magnetic field are:
du

pd—{=—VP +F+(pu)Vu+u(VAH)AH (112)
V-u=0 (1.13)
V-H=0 (1.14)

dd—:'—:V/\(g/\ﬂ)—V/\(nV/\ﬂ) (115)

1.5 Boundary Conditions

Based on the normal mode technique, the basic equations
governing the model under consideration must be solved for the
unperturbed state and also for the perturbed state. These
solutions must satisfy certain conditions across the boundaries
of the model in order to determine the constants of integration
of the differential equations of the fluid model. These
conditions are known as boundary conditions and they may be

some of the following.



1. The kinematic boundary conditions which states that the
normal component of the velocity of the fluid must be
continuous and simultaneously compatible with the
velocity of the deformed interface.

2. The normal component of the magnetic field must be
continuous across the boundary interface.

3. The continuity of the self gravitating potential and its
derivative across the perturbed interfaces.

4. The compatibility condition that the total pressure must be

continuous across the deformed surface.

1.6 On Reported Works

In this section we turn our attention to a large and

important group of problems: the stability of jets and
superposed fluids for its applications in science. The classical
example of jets is the instability of water issuing from a nozzle
as a cylindrical jet. The cause of this instability, as Rayleigh
(1945) first showed, is the surface tension which makes the
infinite cylinder an unstable figure of equilibrium and entails its
breaking into separate pieces with a total surface area which is
less than that of the original cylinder. Plateau (1873) also
concluded that the model is absolutely unstable only to
axisymmetric perturbations whose wavelength is longer than
the circumference 2nR of the jet (radius R) and stable to all

other perturbations.
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