Otoferlin Gene Mutation in Non Syndromic Auditory Neuropathy patients

Thesis submitted for partial fulfillment In

> Master degree in Audiology By

Ghada Moharram Mohamed Khalil (M.B., B.Ch.)

Under supervision of

Prof. Dr. Nadia M. Kamal

Professor of Audiology ENT department Faculty of medicine Ain-Shams University

Prof. Dr. Mohamed El-Sawy

Professor of Genetics Pediatric department Faculty of medicine Ain-Shams University

Prof. Dr. Iman El-Danasoury,

Professor of Audiology ENT department Faculty of medicine Ain-Shams University

Ain-Shams University **2010**

الاختلال الوراثي في جين أوتوفيرلين في مرض الاعتلال العصبي السمعي الغير مرتبط بمتلازمة

رسالة توطئة للحصول على درجة الماجستير في السمعيات

مقدمة من الطبيبة: غادة محرم محمد خليل

تحت إشراف

أ.د / محمد الصاوي أستاذ الوراثة قسم الأطفال جامعة عين شمس أ.د / نادية محمد كمال أستاذ السمعيات قسم الأنف والأذن والحنجرة جامعة عين شمس

أ.د / ايمان صادق الدناصوري أستاذ السمعيات قسم الأنف والأذن والحنجرة جامعة عين شمس

> جامعة عين شمس 2010

Acknowledgment

It is really difficult to select the meaningful words to express my gratitude and thanks to all who contributed in this work.

I deeply thank **Prof. Dr.Nadia Kamal**, professor of Audiology, ENT Department, Faculty of medicine, Ain Shams University for her sincere supervision, unlimited support and step by step assistance.

I also thank **Prof. Dr.Iman Sadek**, professor of Audiology ENT Department, Faculty of medicine, Ain Shams University for her valuable supervision, generous support and accurate revision.

I also thank **Prof. Dr. Mohammad El-Sawy**, professor of Genetics, Pediatric Department, Faculty of medicine, Ain Shams University for his great interest, valuable remarks & precious supervision.

I am greatly indebted to all the doctors of the Medical Genetics center, Ain Shams University, who participated in this study. I thank them deeply for their efforts in DNA extraction.

My special thanks to **Prof. Dr.Paolo Gasparini** and his assistant **Dr.Cristina Zadro**, Researcher Latemer and Department of Reproductive & developmental Sciences, University of Trieste, Italy, who carried out the difficult job of DNA analysis.

My gratitude and thanks for **Prof. Dr. Osama Abd-El-Ghany**, Vice Dean for graduates studies and research, for his effort and fruitful help during carrying out this work.

I heartily thank all the members of the Audiology unit, Faculty of medicine, Ain Shams University, for their cooperation and continuous support.

I also thank all the patients for being helpful and co-operative.

Last, but not least, I express my deep gratitude to my family for their effort, encouragement and support.

Ghada Moharram

Index of Contents

	Page
I. Introduction and rationale	_
II. Aims of the work	3
III. Review of literature	
Chapter (1): Auditory Neuropathy	4
Background of the term "Auditory neuropathy"	5
Definition	6
Prevalence	7
Pathology and Pathophysiology	7,10
Possible etiology	
Clinical presentation	
Classification	
Differential diagnosis	
Management strategies	
Chapter (2): Genetics of Auditory Neuropathy	30
Genetic forms and genes involved in auditory neuropathy	
Otoferlin (OTOF) Gene	
General principles	
Structure	
Mapping	
Function	
Molecular genetics pathogenesis	43
Clinical profile	
Differential Diagnosis	
Molecular diagnosis of OTOF related hearing loss	
Genetic Counseling	
Ç	
IV. Methodology	52
V. Results	
VI. Discussion	
VII. Conclusions	
VIII. Recommendations	
IX. Summary	
X. References	
Glossary	
Appendix	
Arabic Summary	148

List of tables

Table	Title	Page
No.		
1,2	The expected results of physiological tests and functional	26
	measures when the pathology of the auditory pathway is confined	26 *
	to specific anatomic levels. (Rapin & Gravel 2003)	
3	Age and gender distribution in the study and control groups	62
4	Distribution of patients according to the probability of	63
	heredofamilial etiology of hearing loss	
5	Distribution of familial cases according to consanguinity	63
6	Breakdown of the children according to the age of onset and	64
	duration of hearing loss	
7	Distribution of the children according to the course of hearing	64
	loss	
8	Distribution of the children patients according to the possible risk	65
	factors	
9	Distribution of the patients according to the verbal language	66
	development	
10	Distribution of the patients according to the mode of	66
	communication	
11	Distribution of the patients according to the rehabilitation device	66
	use and rehabilitation therapy.	
12	Mean, Standard deviation (SD) and range of duration of hearing	67
	aid use and rehabilitation therapy	
13	Average and median of pure tone thresholds in dBHL at different	67
	frequencies and Speech Detection test at free field for children	

	group.	
14	Breakdown of children group according to the degree of hearing	68
	loss	
15	Breakdown of children group according to the configuration of	68
	hearing loss	
16	Average and median of binaural aided thresholds in dB HL at	69
	different frequencies and Speech Detection test at free field for	
	children group.	
17	Breakdown of children group according to the number of peaks	70
	and duration of cochlear microphonics	
18	Breakdown of children group according to the threshold of	71
	cochlear microphonics	
19	Breakdown of children group according to the results of	72
	(TOAE's)	
20	Breakdown of the adults according to the age of onset and	73
	duration of hearing loss	
21	Distribution of the adults according to the course of hearing loss	73
22	Average and median of pure tone thresholds in dB HL at different	74
	frequencies for adult group	
23	Breakdown of adults group according to the degree of hearing	75
	loss	
24	Breakdown of adults group according to the configuration of	76
	hearing loss	
25	Mean(X), Standard deviation (SD) of Speech Reception	76
	Thresholds "SRT" in dBHL, Word Discrimination Score	
	"WDS%" with and without visual cues "VC"	

26	Breakdown of adult group according to the number of peaks and	77
	duration of cochlear microphonics	
27	Breakdown of adults group according to the threshold of cochlear	78
	microphonics	
28	Breakdown of adults group according to the results of (TOAE's)	78
29	Distribution of patients according to the results of OTOF gene	79
	analysis	
30	OTOF gene mutations in the OTOF positive category	80
31	Summary of OTOF gene mutations in the OTOF positive	81
	category	
32	Summary of OTOF gene Single nucleotide polymorphism (SNP)	83
	in the OTOF negative category	
33	Genotype-phenotype of OTOF gene positive category	84
34	Cochlear microphonics and TOAE's of OTOF gene positive	85
	category	
35	Degree of hearing loss in both OTOF +ve & OTOF -ve categories	86
36	Risk factors associated with AN patients & results of OTOF gene	87
	mutations (children group)	
37	Results of auditory assessment of AN patients & results of OTOF	88
	gene mutations (children group)	
38	Results of auditory assessment of AN patients (adults group)	89

List of Figures

Figure	Title	Page
No.		
1	A computer model of the discharges of ten auditory nerve fibers	9
	synaptically related to a single inner hair cell.	
2	Four electrocochleography (ECochG) waveforms	20
3	Examples of the two different types of electrocochleography	22
	waveforms in AN subjects	
4	Structure of a gene	37
5	Protein synthesis	38
6	Schematic representation of the human otoferlin long and short	39
	forms.	
7	mapping of OTOF and its surrounding genes	40
8	The ribbon synapse	41
9	Ribbon diagrams of the structures of the C2-domain	43
10	Median pure tone thresholds of children group at different	69
	frequencies and aided threshold for children with hearing aids	
11	Median pure tone thresholds of Adults group at different	75
	frequencies	

I. Introduction and Rationale

Auditory neuropathy (AN) is a hearing disorder characterized by preservation of outer hair cell function as indicated by the presence of oto-acoustic emissions (OAE) and/or cochlear microphonics (CM), with absent auditory brainstem responses (ABRs). Individuals with AN can have various degrees of hearing loss, with generally disproportionately poor speech understanding (Starr et al., 1996& 2000; Berlin et al., 1999, Wang et al., 2003).

Starr et al., (2000) & Varga et al., (2006) pointed out that in auditory neuropathy the lesion lies at the level of the inner hair cells (IHC), the IHC synapse to the afferent nerve fibers, or the auditory nerve itself.

The estimated incidence of auditory neuropathy within at-risk population is 0.23% or 11% of children with sensorineural hearing loss (Rance et al., 1999).

Approximately 50% of AN patients have no defined etiology (Starr et al., 2000). However, a genetic basis for neuropathy had been identified (Varga et al., 2003).

The relation between auditory neuropathy and mutations of OTOF gene were established for the first time in 2003 by Varga et al. who identified four different mutations on such gene to be responsible for auditory neuropathy of recessive heredity in four Spaniard families.

OTOF gene encodes otoferlin, a membrane-anchored calcium-binding protein that plays a role in the exocytosis of synaptic vesicles at the auditory inner hair cell ribbon synapse (Varga et al., 2003).

A multicenter study in 2008 on the prevalence and spectrum of deafness-causing mutations in the OTOF gene revealed that OTOF mutations are a major cause of inherited auditory neuropathy (Rodríguez-Ballesteros et al., 2008).

Morever mutation of the OTOF gene correlates with a phenotype of prelingual, profound non-syndromic recessive auditory neuropathy (NSRAN) without any other detectable peripheral neuropathies (Varga et al., 2003; Rodriguez-Ballesteros et al.; 2003; Tekin et al., 2005).

Identification of the underlying gene(s) for AN is one of the key challenges for understanding the molecular basis of different AN phenotypes. This helps define the mechanism of hearing and the specific role of IHCs and OHCs in this phenomenon. Also it may have important implications for diagnosis, newborn screening and prognosis. It improves our ability to provide appropriate communication skills and tools in a timely manner to those affected.

To date, mutations in OTOF gene among auditory neuropathy Egyptian patients have not been investigated. This work is hoping to explore the role of OTOF gene in auditory neuropathy patients among Egyptian population.

II. Aims of the work

- 1- To identify the characteristic mutations in the otoferlin gene associated with non syndromic auditory neuropathy in Egyptian population if any.
- 2- To find the relation between audiological profile and otoferlin gene mutation if found.

iklzxcvbnmawertvuionaedfabjklzxcvb Chapter (1) tyuiopas **Auditory Neuropathy** lfghjklzx tcvbnmq wertyuiopasuignjkizxcvbningwertyuio

It was almost 30 years ago that audiologists began to hear about patients with absent auditory brain stem responses (ABRs), but normal or near normal audiograms! In the early 1980s, Davis and Hirsh (1979), Worthington and Peters (1980), Lenhardt (1981) and Kraus et al. (1984) were among the first to publish case accounts of people with impaired speech comprehension out of proportion to the pure tone threshold deficits and absent ABR despite of the measurable hearing.

Fortunately, there has been an increasing interest in understanding this pattern of results and discovering underling anatomical and physiological processes. Even though detailed studies of the pathology, etiology even the time course of clinical and auditory test abnormalities in individual patients with this clinical syndrome are still incomplete.

Background of the term "Auditory neuropathy":

The term auditory neuropathy was first used by Starr et al. (1996) they suggested that this type of hearing impairment is due to a disorder of auditory nerve function and may have, as one of its causes, a neuropathy of the auditory nerve, occurring either in isolation or as part of a generalized neuropathic process and thus, coined the term 'auditory neuropathy'

Scientists have described patients with similar clinical findings, but with a wide variety of terms, such as "Low Frequency Sensorineural Hearing Loss Syndrome" (Soliman, 1987), "Neural synchrony disorder" (Starr et al., 1991), "Auditory Nerve Disease" (Kaga et al., 1996) and "Paradoxical hearing loss" (Davis & Hirsh, 1979).

Berlin et al. (2001) suggested the term auditory dys-synchrony instead of auditory neuropathy, as the cochlear nerve was not always injured, and therefore

the old term would be semantically incorrect. Even with this recommendation, however, both terms are still used in papers that describe those patients. As a result, auditory neuropathy/dyssynchrony (AN/AD) has emerged as a new term (Kaga et al., 2002; Santarelli & Arslan, 2002; Berlin et al., 2003a).

Definition of auditory neuropathy/dys-synchrony (AN/AD):

Auditory neuropathy/dys-synchrony (AN/AD) is a hearing disorder affecting auditory nerve function in the presence of preserved cochlear outer hair cell activity (Starr et al. 1996).

Sininger and Oba (2001) proposed that diagnosis of AN/AD ought to be based on all of the following criteria:

- (1) Evidence of poor auditory neural function such as: Abnormal auditory brainstem response (ABR) in the form of delayed latencies and/or below normal amplitudes and/or abnormal waveform morphology (Rance, 2005). And elevated or absent other auditory brainstem reflexes such as stapedial reflexes and otoacoustic emissions suppression by noise (which is mediated by the olivocochlear bundle).
- (2) Evidence of normal OHC function, such as normal OAE or cochlear microphonics on electrocochleography (ECochG). However, OAEs can disappear over time, whilst cochlear microphonics may remain present (Deltenre et al., 1999).
- (3) Evidence of poor hearing with characteristic temporal and speech perception deficits which are disproportionate to the audiometric thresholds (Zeng et al., 2001).

Finally, Sininger and Oba (2001) proposed that exclusion of other potential causes ought to be made by appropriate investigations, such as a brain magnetic resonance imaging (MRI) to establish the structural integrity of the auditory nerve. A recent study identified hypoplastic or absent 8th nerve on brain MRIs in just under 20% of children with clinical characteristics of AN/AD (Buchman et al., 2006). This was more likely to be true if AN/AD was unilateral and/or the associated hearing loss was profound (Bamiou, 2009).

Prevalence of auditory neuropathy/dys-synchrony (AN/AD):

According to Colm et al. (2002) the prevalence of auditory neuropathy among patients with sensorineural hearing loss ranged from 0.5% up to 15% and many investigators lie within such range. Prevalence is estimated to range between 0.23% and 0.94% in infants "at risk" for hearing impairment (Foerst et al., 2006; Rance et al., 1999). The prevalence of auditory neuropathy among Egyptian infants and young children diagnosed to have severe to profound hearing loss is 13.4% (Sanyelbhaa et al., 2009).

Pathology of AN/AD:

Although the underlying lesion(s) and the pathophysiologic mechanisms in AN/AD are key-points in understanding and treating the disease, the related evidence is still unclear and, in some cases confusing (Vlastarakos et al., 2008).

The pathology of AN has not yet been defined but is likely to be similar to temporal bone studies of individuals with a 'sensorineural deafness' and hereditary peripheral neuropathy published about 30 years ago (Spoendlin, 1974; Hallpike et al., 1980). Those studies showed selective loss of auditory nerve and ganglion cells in the presence of preserved inner and outer hair cells. The authors noted their