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Summary 

Nanotechnology allows us to design highly efficient photocatalytic nanocomposite which 

act as an efficient catalyst for reduction of global atmospheric pollution and purification 

of polluted water. This is very attractive area and one of the most desirable and 

challenging goals in the research of environmentally-friendly catalysts. TiO2 

photocatalysts have been attracting much attention in resent years, because TiO2 

photocatalyst can completely decompose toxic and non-biodegradable organic materials 

into CO2, H2O, and inorganic constituents. Many researches has been undertaken to use 

TiO2 photocatalyst for purification of polluted water. During the process of purification 

of polluted water, photocatalyst has to be separated from the treated water. To separate 

the photocatalyst from water, photocatalyst should be supported on bulk materials such as 

polymer which has been widely used. 

In this study, visible light assisted degradation of colored organic pollutant using 

semiconductor nanoparticles or core-shell nanocomposite have been studied in air and the 

photodegradation rate have been determined. Rhodamine 6G has been used as a colored 

organic dye which has absorption spectra in the visible region. The photodegradation rate 

of the organic dye is monitored by the bleach of the absorption band as a function of 

time. TiO2 nanoparticles were prepared via sol-gel method and the size of the obtained 

particles has been determined using TEM. Under 3 h of irradiation with a 150 W xenon 

lamp, over 70% degradation of pollutants has been observed. A working mechanism 

involving excitation of surface adsorbed dye, followed by charge  

Injection into the TiO2 conduction band and formation of reactive √O2
−/√HO2 radicals is 

proposed for the degradation of organics to carbon dioxide. In addition, Core-shell 

nanocomposite of TiO2 coated with gold and TiO2 coated with Iron oxide have been 

prepared and characterized via TEM and XRD. The photocatalytic activity of these 

nanocomposites has been compared to pure TiO2 nanocrystals. Our results indicate that 

TiO2-gold core-shell particle is more active photocatayst than TiO2 alone because of the 

charge separation enhancement due to the presence of metal-semiconductor junction. In 

addition, the effect of the plasmonic gold absorption band enhances the number of photon 

absorbed per particle. Remarkable increase in the photodegradation rate in presence of 

sun light using core-shell TiO2-gold core shell particles, on the other hand, the rate of 
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photodegradation over core-shell TiO2-iorn oxide nanocomposite does not change 

significantly compared to pure TiO2 nanocrystal. 

 
 



  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  



Chapter One                                    Introduction and Literature Review 

 

[1] 
 

1.1.  General Introduction: 

The problems which facing our society could rank as follow: 

1-Energy         2-Water             3-Food                4-Envionment                  5-Disease 

Water is very serious problem, either we have it or we do not. Fortunately, there is plenty 

of water in our planet. In fact, we probably have more water than anything else. 

However, it has salt in it, and it is often thousands of miles away from, where we need it. 

Some of it contaminated with oil, fertilizers or factory wastes. We need it in vast 

amounts, hundreds of millions of gallons a day and so clean. We can take the salt out of 

the water. We can clean it up from impurities and wastes. There is no doubt some 

nanotechnology that will do it at 100 percent Efficiency or close to it. 

i. What Nanotechnology offers the field of water treatment?  

In recent years, heterogeneous photocatalysis has proved to be a useful tool for the 

degradation of water pollutants over the past 30 years. The heterogeneous photocatalysis 

for total oxidation of organic and inorganic water pollutants has been studied extensively 

[1,2]. Environmental purification using TiO2 photocatalysts has attracted a great deal of 

attention with the increasing number of recent environmental problems in the world [3-

6]. 

ii. What is photocatalysis?      

Heterogeneous photocatalysis is a discipline which includes a large variety of 

reactions: organic synthesis, water splitting, photoreduction, hydrogen transfer, O2
18-O2

16 

and deuterium-alkane isotopic exchange, metal deposition, disinfection and anti-cancer 

therapy, water detoxification, gaseous pollutant removal, etc [7,8]. Among these 

appearances, titania-assisted heterogeneous photocatalytic oxidation has received more 

attention for many years as alternative method for purification of both air and water 

streams. 

The basic photophysical and photochemical principles underlying photocatalysis 

are already established and have been reported [9,10]. Vinodgopal and Kamat [11] 

reported that the dependence of the rate of 1,3-diphenylisobenzofuran photodegradation 

on the surface coverage. In other words, only the molecules that are in direct contact with 

the catalyst surface undergo photocatalytic degradation. 


