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Summary

Nanotechnology allows us to design highly efficient photocatalytic nanocomposite which
act as an efficient catalyst for reduction of global atmospheric pollution and purification
of polluted water. This is very attractive area and one of the most desirable and
challenging goals in the research of environmentally-friendly catalysts. TiO,
photocatalysts have been attracting much attention in resent years, because TiO,
photocatalyst can completely decompose toxic and non-biodegradable organic materials
into CO,, H,0, and inorganic constituents. Many researches has been undertaken to use
TiO, photocatalyst for purification of polluted water. During the process of purification
of polluted water, photocatalyst has to be separated from the treated water. To separate
the photocatalyst from water, photocatalyst should be supported on bulk materials such as

polymer which has been widely used.

In this study, visible light assisted degradation of colored organic pollutant using
semiconductor nanoparticles or core-shell nanocomposite have been studied in air and the
photodegradation rate have been determined. Rhodamine 6G has been used as a colored
organic dye which has absorption spectra in the visible region. The photodegradation rate
of the organic dye is monitored by the bleach of the absorption band as a function of
time. TiO2 nanoparticles were prepared via sol-gel method and the size of the obtained
particles has been determined using TEM. Under 3 h of irradiation with a 150 W xenon
lamp, over 70% degradation of pollutants has been observed. A working mechanism

involving excitation of surface adsorbed dye, followed by charge

Injection into the TiO, conduction band and formation of reactive \/O{/\/HOz radicals is
proposed for the degradation of organics to carbon dioxide. In addition, Core-shell
nanocomposite of TiO, coated with gold and TiO, coated with Iron oxide have been
prepared and characterized via TEM and XRD. The photocatalytic activity of these
nanocomposites has been compared to pure TiO; nanocrystals. Our results indicate that
TiO,-gold core-shell particle is more active photocatayst than TiO, alone because of the
charge separation enhancement due to the presence of metal-semiconductor junction. In
addition, the effect of the plasmonic gold absorption band enhances the number of photon
absorbed per particle. Remarkable increase in the photodegradation rate in presence of

sun light using core-shell TiO,-gold core shell particles, on the other hand, the rate of

[xi]



photodegradation over core-shell TiO,-iorn oxide nanocomposite does not change

significantly compared to pure TiO, nanocrystal.
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Chapter One Introduction and Literature Review

1.1. General Introduction:

The problems which facing our society could rank as follow:

1-Energy 2-Water 3-Food 4-Envionment 5-Disease
Water is very serious problem, either we have it or we do not. Fortunately, there is plenty
of water in our planet. In fact, we probably have more water than anything else.
However, it has salt in it, and it is often thousands of miles away from, where we need it.
Some of it contaminated with oil, fertilizers or factory wastes. We need it in vast
amounts, hundreds of millions of gallons a day and so clean. We can take the salt out of
the water. We can clean it up from impurities and wastes. There is no doubt some

nanotechnology that will do it at 100 percent Efficiency or close to it.
i.  What Nanotechnology offers the field of water treatment?

In recent years, heterogeneous photocatalysis has proved to be a useful tool for the
degradation of water pollutants over the past 30 years. The heterogeneous photocatalysis
for total oxidation of organic and inorganic water pollutants has been studied extensively
[1,2]. Environmental purification using TiO, photocatalysts has attracted a great deal of
attention with the increasing number of recent environmental problems in the world [3-

6].

it.  What is photocatalysis?

Heterogeneous photocatalysis is a discipline which includes a large variety of
reactions: organic synthesis, water splitting, photoreduction, hydrogen transfer, 0,'*-0,'®
and deuterium-alkane isotopic exchange, metal deposition, disinfection and anti-cancer
therapy, water detoxification, gaseous pollutant removal, etc [7,8]. Among these
appearances, titania-assisted heterogeneous photocatalytic oxidation has received more
attention for many years as alternative method for purification of both air and water

streams.

The basic photophysical and photochemical principles underlying photocatalysis
are already established and have been reported [9,10]. Vinodgopal and Kamat [11]
reported that the dependence of the rate of 1,3-diphenylisobenzofuran photodegradation
on the surface coverage. In other words, only the molecules that are in direct contact with

the catalyst surface undergo photocatalytic degradation.

[1]



