Role of Sonographic Cervical Length and Modified Bishop Score in Preinduction Cervical Assessment: A Randomized Controlled Trial

Chesis

Submitted for Fulfillment of Master Degree in Obstetric and Gynecology

By

Heba Mohamed Elsayed Bahr

M.B.,B.Ch.(2008) Faculty of Medicine, Tanta University Resident of Obstetrics and Gynecology Al Menshawy Hospital

Under the Supervision of

Prof. Hazem Mohamed Sammour

Professor of Obstetrics & Gynecology Faculty of Medicine, Ain Shams University

Assist. Prof. Ihab Fouad Serag Eldin Allam

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine, Ain Shams University

Dr. Mostafa Fouad Gomaa

Lecturer in Obstetrics & Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2014

"رَبِّ أُورْخِنِي أَنْ أَشْكُرَ نِعْمَتكَ (الَّتِي أَنعَمْتَ عَلَيَّ وَرَائِ أَشْكُرَ نِعْمَتكَ (الَّتِي أَنعَمْتَ عَلَيَّ وَكَانُ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَوْخِلْنِي وَعَلَى وَرَائِنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَوْخِلْنِي " برَحْمَتِكَ فِي عِبَاوِكَ (الصَّالِحِينَ "

صدق الله العظيم

النمل {١٩}

Acknowledgment

First, thanks are all to **Allah** by the grace of whom, this work was possible.

I am greatly indebted to my supervisors for their advice, cooperation, support and encouragement throughout the preparation of the work.

I would like to express my sincere gratitude and appreciation to Professor Hazem Mohamed Sammour, Professor Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his kind supervision, continuous encouragement and unlimited support.

I wish to express my deep gratitude and profound appreciation to Professor Ihab Fouad Serag Eldin Allam, Assistant Professor Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, endless support and precious advice I wish he was not exhausted so much during this work.

I would like to express my sincere gratitude and appreciation to **Dr. Mostafa Fouad Gomaa**, Lecturer in Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his kind supervision, continuous encouragement and unlimited support for his great support and the tremendous effort he has done in the meticulous revision of the whole work.

Last, but not least, all thanks for My Family for the support and the encouragement they gave me and for understanding my circumstances.

List of Abbreviation

ACOG	American College of Obstetric and Gynecology
ARM	Artificial Rupture of Membranes
BMI	Body mass index
CS	Cesarean section
CL	Cervical length
CRF	Corticotropin-releasing factor
2D	Two-dimensional
EDC	Estimated date of confinement
fFN	Fetal fibronectin
FHR	Fetal heart rate
HPA	Hypothalamic-pituitary-adrenal
IL-8	Interleukin-8
MMP	Metalloprotienases
PGDH	Prostaglandin dehydrogenase enzyme
PGE2	Prostaglandin E2
PGF2a	Prostaglandin F2a
RCT	Randomized controlled trial

List of Tables

Table		Page
Table (1):	The Bishop scoring (1964)	45
Table (2):	Numeric Rating System	46
Table (3):	Distribution of the study population	85
	as regard general data	
Table (4):	Distribution of the study population	86
	as regard indications of induction	
Table (5):	Comparison between the women who	87
	delivered vaginally and those by	
	caesarean section regarding the	
	indications for induction of labor	
Table (6):	Distribution of group A as regard	88
	modified Bishop results	
Table (7):	Distribution of group B as regard	89
	cervical length	
Table (8):	Distribution of the study population	90
	as regard method of induction of	
	labor	
Table (9):	Distribution of the studied population	91
	as regard indications of CS	
Table (10):	Distribution of the studied population	92
	as regard maternal morbidity	
Table (11):	Distribution of the study population	93
	in relation to cervical length and	
	mode of delivery.	

Table (12):	Comparison between Modified	95
	Bishop score versus mode of delivery	
Table (13):	Relation ship between cervical length	97
	versus neonatal outcome	
Table (14):	Relation ship between Modified	98
	Bishop score versus neonatal	
	outcome	
Table (15):	Comparison between group A versus	99
	B as regard method of induction	
	oxytocine and PG induction	
Table (16):	Comparison between group A versus	100
	B as regard mode of delivery	
Table (17):	Comparison between group A versus	101
	B as regard maternal morbidity	
Table (18):	Accuracy of Modified Bishop Score	102
	in prediction of successful induction	
Table (19):	Accuracy of ultrasonographic cervical	102
	length in prediction of successful	
	induction	
Table (20):	Correlation between cervical length	103
	and Modified Bishop score versus	
	successful labor induction.	

List of Figures

Figure		Page
Fig. (1):	Stages of labor	13
Fig. (2):	Structure of oxytocin	24
Fig. (3):	Prostaglandin E2	33
Fig. (4):	Distribution of the study population as	85
	regard general data	
Fig. (5):	Distribution of the study population as	86
	regard indications of induction	
Fig. (6):	Comparison between the women who	87
	delivered vaginally and those by	
	caesarean section regarding the	
	indications for induction of labor	
Fig. (7):	Distribution of group A as regard	88
	modified Bishop results	
Fig. (8):	Distribution of group B as regard	89
	cervical length	
Fig. (9):	Distribution of the study population as	90
	regard method of induction of labor	
Fig. (10):	Distribution of the studied population	91
	as regard indications of CS	
Fig. (11):	Distribution of the studied population	92
	as regard maternal morbidity	

Fig. (12):	Distribution of the study population in	93
	relation to cervical length and mode of	
	delivery	
	·	
Fig. (13):	ROC curve of cervical length for	94
	prediction of successful labor induction	
Fig. (14):	Comparison between Modified Bishop	95
	score versus mode of delivery	
Fig. (15):	ROC curve of Modified Bishop score	96
	for prediction of successful labor	
	induction	
Fig. (16):	Relation ship between cervical length	97
	versus neonatal outcome	
Fig. (17):	Relation ship between Modified Bishop	98
	score versus neonatal outcome	
Fig. (18):	Comparison between group A versus B	99
	as regard method of induction of labor	
Fig. (19):	Comparison between group A versus B	100
	as regard mode of delivery	
Fig. (20):	Comparison between group A versus B	101
	as regard maternal morbidity	
Fig. (21):	Correlation between cervical length	103
	versus successful labor induction	
Fig. (22):	Correlation between Modified Bishop	104
	score versus successful labor induction	

Contents

Title	Page
Introduction	1
Aim of the Work	6
Review of Literature	7
Chapter (I): Induction of Labor	7
Chapter (II): Preinduction Cervical Assessment	42
Chapter (III): Role of Transvaginal Ultrasonographic Measurement of Cervical Length in Predicting Successful Induction of Labor	60
Patients and Methods	72
Results	84
Discussion	105
Summary and Conclusions	121
Recommendation	127
References	128
Arabic Summary	

Introduction

Induction of labor represents one of the most common interventions in clinical obstetrics. In recent years, the rate at which providers choose to induce labor has more than doubled, from a rate of 9.5% of all labors induced in 1991 to a rate of 20.6% in 2003 (*Martin et al.*, 2005).

One of the challenges of labor induction is predicting which patients will have success. This is especially true in cases of elective induction which have been estimated to account for up to 25% of all inductions (*Glantz et al.*, 2003). Failed induction appears to be one factor that is responsible for the increasing cesarean delivery rate (*Luthy et al.*, 2004).

Labor induction, whether medically indicated or elective, is associated with an increased risk of cesarean delivery compared with spontaneous labor, and this risk is significantly influenced by the status of the cervix at the time of labor induction particularly in nulliparous women and although cervical assessment with the use of the Bishop score was described initially in its application to multiparous women, it has also been shown to predict

induction success in nulliparous women (Seyb et al., 1999; Vrouenraets et al., 2005).

Preinduction cervical length plays a key role in labor progression during the latent phase, but not during the active phase of labor. Cervical status has been established to be clearly related to the outcome and success of labor induction (*Bishop*, 1964).

Investigators have used the likelihood of vaginal delivery or the time interval between induction and delivery as primary outcome variables. However, the use of these parameters as outcome variables obviously affects conclusions because they are influenced by factors other than cervical status, for example, by parity, birth weight maternal stature, and indications for cesarean delivery (*Cnattingius et al.*, 2005; *Rane et al.*, 2003).

The delivery mode and total duration of labor can be affected by many various factors other than cervical status, for example, parity, fetal size and position, maternal stature, indications for cesarean delivery, induction agents, and physician preference. In fact, parity was an independent predictor of the total duration of labor as well as the duration of induction, and neither cervical length nor the Bishop score was significantly predictive

for the total duration of labor. In addition, there was no difference in delivery mode between women with short and long cervical lengths (*Ware et al., 2000; Gabriel et al., 2002*).

Cervical assessment before labor induction is essential to select candidates for elective induction and to determine the most appropriate method for inducing labor or ripening an unfavorable cervix. The sonographic measurement of cervical length probably has several advantages over digital estimation. Ultrasound imaging can assess full cervical length and status of the internal os without invading the endocervical canal (*Lenihan*, 1984).

Although the Modified Bishop score remains recognized as a useful tool, some care givers have voiced about its accuracy. The ultrasonographic concerns measurement of cervical length is more accurate and examination. reliable than digital In addition. ultrasonographic cervical assessment has been known as a reproducible, objective, and quantitative method, and can be performed easily. Therefore, more liberal application of ultrasonography to preinduction cervical assessment in term pregnancy would enable obstetricians to predict the outcome of labor induction and to select a safer and more

efficient policy of induction (Goldberg et al., 1997; Sonek et al., 1998).

Recently several investigators have demonstrated that transvaginal sonographic measurements of the cervical length are a better predictor of successful labor induction outcome than the Bishop score (*Rane et al.*, 2004).

Women with long cervical lengths at the time of induction may experience a longer latent phase. On the contrary, if women, whose cervices have been short and started to dilate, begin labor by induction, not much time will elapse to enter the active phase of labor (*Feinstein et al.*, 2002).

Several authors have suggested that an ultrasound examination can offer a more accurate assessment of the cervical length and wedging than can digital examination (*Pandis et al.*, 2001; Ware et al., 2000).

In comparison of Transvaginal ultrasonography with the Bishop score, the use of sonographically measured cervical length for assessing the cervix prior to the induction of labor can reduce the need for prostaglandin administration by approximately 50%

without adversely affecting the outcome of induction in nulliparae at term (*Bartha et al.*, 2005).

The use of sonographically measured cervical length with a cut-off value of ≥ 28 mm is as effective as the Modified Bishop score with a cut-off value of ≤ 4 for determining prostaglandin administration for preinduction cervical ripening in nulliparae at term requiring induction. Indeed, these observations were expected, given that the favorability of the cervix prior to induction of labor has a substantial impact on outcome (*Sanchez-Ramos*, 2005; *Xenakis et al.*, 1997).

The incidence of Cesarean section following labor induction when the cervix is unfavorable has been reported to be between 22% and 24% for High-risk pregnancies, such as those involving prolonged gestation, pre-eclampsia or fetal growth restriction, are usually candidates a prompt delivery. Induce labor should be made with caution; it would be useful to be able to predict induction failure and thus determine whether it would be better to carry out a Cesarean section. Transvaginal ultrasound assessment of the cervix has been reported to be a simple and reproducible examination for the prediction of successful labor induction (*Pandis et al.*, 2001).