## Stent Design in Management of Extracranial Carotid Stenosis

# Thesis Submitted for Partial Fulfillment of MD Degree In Neurology

#### By

#### Ayman Hassan Othman Mohammed El Sudany

(M.B., B.Ch, M.Sc. Neuropsychiatry)
Faculty of Medicine-Ain Shams University

### **Under Supervision of**

#### Prof. Dr. Amira Ahmed Zaki Dwedar

Professor of Neurology Faculty of Medicine -Ain Shams University

#### Prof. Dr. Mohammad Ossama Abdulghani

Professor of Neurology
Faculty of Medicine -Ain Shams University

#### Prof. Dr. Azza Abdel Naser Abdel Aziz

Professor of Neurology
Faculty of Medicine -Ain Shams University

#### Prof. Dr. Salma Hamed Khalil

Professor of Neurology Faculty of Medicine -Ain Shams University

### Dr. Ahmed Ali Ibrahim El Bassiouny

Assistant Professor of Neurology Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2017





**Acknowledgement** 

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it had reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Amira Ahmed Zaki**, Professor of Neurology, faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am eternally grateful to **Prof. Dr. Mohammad**Ossama Abdulghani, Professor of Neurology, faculty of
Medicine, Ain Shams University, for his help and keep
support, without his help this work would have never been
completed. I'm deeply indebted to him for his scrutiny, his
comments and suggestion and his deep interest in the subject.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Azza Abdel Nasser Abel Aziz**, Professor of Neurology, faculty of Medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Salma Hamed Khalil,** Professor of Neurology, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work. I really appreciate her patience and support.

I would like to express my deepest gratitude to Assist. **Prof. Dr. Ahmed El Bassiouny**, Assistant professor of Neurology, Faculty of Medicine, Ain Shams University for his kind advice support and valuable supervision and his great effort throughout this work.

Last but not least,, I wish to express my love and respect to my parents, my lovely wife, my son, my brother and my sister, for their endless love and care, for their valuable emotional support and continuous encouragement which brought the best out of me. I owe them all every achievement throughout my life.

Finally, my thanks should go to all the patients who were the subjects of this work and who cooperated in this research.



Ayman Hassan El Sudany

## **Table of Contents**

| Title                                             | Page |
|---------------------------------------------------|------|
| List of abbreviations                             | I    |
| List of figures                                   | Vi   |
| List of tables                                    | Viii |
| Introduction                                      | 1    |
| Aim of the Work                                   | 3    |
| Review of literature                              | -    |
| Chapter (1): Essential neurovascular anatomy      | 4    |
| Chapter (2): Extracranial carotid stenosis        | 16   |
| Chapter (3): Management of carotid artery disease | 47   |
| Subjects and methods                              | 79   |
| Results                                           | 90   |
| Discussion                                        | 109  |
| Conclusion and Recommendations                    | 118  |
| Summary                                           | 121  |
| References                                        | 123  |
| Appendix                                          | 152  |
| Arabic summary                                    |      |

## **List of Abbreviations**

| Meaning                                              |
|------------------------------------------------------|
| The 1 <sup>st</sup> segment of the anterior cerebral |
| artery                                               |
| The 2 <sup>nd</sup> segment of the anterior cerebral |
| artery                                               |
| The 3 <sup>rd</sup> segment of the anterior cerebral |
| artery                                               |
| Anterior cerebral artery                             |
| Asymptomatic carotid artery stenosis                 |
| Angiotensin-converting enzyme inhibitors             |
| Anterior choroidal artery                            |
| Anterior communicating artery                        |
| Asymptomatic carotid surgery trial                   |
| Activated clotting time                              |
| Asymptomatic carotid trial                           |
| Acute Neuropsychological Changes                     |
| Following Stenting with Distal Protection            |
| American heart association                           |
| Angiotensin receptors blockers                       |
| Body mass index                                      |
| Blood pressure                                       |
| Cervical segment of the internal carotid             |
| Patrous sagment of the internal agratid              |
| Petrous segment of the internal carotid              |
| I assume sagment of the internal corotid             |
| Lacerum segment of the internal carotid artery       |
|                                                      |

| Abbreviation | Meaning                                    |
|--------------|--------------------------------------------|
| <b>C4</b>    | Cavernous segment of the internal carotid  |
|              | artery                                     |
| C5           | Clinoidal segment of the internal carotid  |
|              | artery                                     |
| C6           | Ophthalmic segment of the internal carotid |
|              | artery                                     |
| C7           | Communicating segment of the internal      |
|              | carotid artery                             |
| CABG         | Coronary artery bypass graft               |
| CAS          | Carotid artery stenting                    |
| CASES        | Carotid artery stenting with emboli        |
|              | protection surveillance                    |
| CAVATAS      | Carotid and Vertebral Artery Transluminal  |
|              | Angioplasty Study                          |
| CC           | Common carotid                             |
| CCA          | Common carotid artery                      |
| CDUS         | Carotid duplex ultrasound                  |
| CEA          | Carotid endarterectomy                     |
| CEUS         | Contrast enhanced ultrasound               |
| CI           | Confidence interval                        |
| CIN          | Contrast induced nephropathy               |
| CM           | Centimeter                                 |
| CREST        | Carotid revascularization endarterectomy   |
|              | versus stenting trial                      |
| CT           | Computed tomography scan                   |
| CTA          | Computed tomography angiography            |

| Abbreviation | Meaning                                            |
|--------------|----------------------------------------------------|
| DL           | Deciliter                                          |
| DM           | Diabetes mellitus                                  |
| DSA          | Digital subtraction angiography                    |
| DUS          | Duplex ultrasound                                  |
| DWI          | Diffusion weighted imaging                         |
| ECA          | External carotid artery                            |
| ECST         | European carotid surgery trial                     |
| EPDs         | Embolic protection devices                         |
| GP           | Glycoprotein                                       |
| HDL-C        | High density lipoprotein cholesterol               |
| HR           | Hazard ratio                                       |
| HS           | Highly significant                                 |
| HTN          | Hypertension                                       |
| ICA          | Internal carotid artery                            |
| ICH          | Intra cerebral hemorrhage                          |
| ICSS         | International carotid stenting study               |
| IMT          | Intima-media thickness                             |
| ISHD         | Ischemic heart disease                             |
| ISR          | In-stent restenosis                                |
| IQR          | Interquartile range                                |
| IV           | Intravenous                                        |
| KG           | Kilogram                                           |
| LCCA         | Left common carotid artery                         |
| LDL-C        | Low density lipoprotein cholesterol                |
| M1           | The 1 <sup>st</sup> segment of the middle cerebral |
|              | artery                                             |

| Abbreviation | Meaning                                               |
|--------------|-------------------------------------------------------|
| M2           | The 2 <sup>nd</sup> segment of the middle cerebral    |
|              | artery                                                |
| M3           | The 3 <sup>rd</sup> segment of the middle cerebral    |
|              | artery                                                |
| M4           | The 4 <sup>th</sup> segment of the middle cerebral    |
|              | artery                                                |
| MCA          | Middle cerebral artery                                |
| MES          | Micro emboli stemming                                 |
| Mg           | Milligram                                             |
| MI           | Myocardial infarction                                 |
| mL           | Milli-liter                                           |
| miR          | microRNA                                              |
| mm2          | Millimeter square                                     |
| mmol/L       | Milli-mole per liter                                  |
| MRA          | Magnetic resonance angiography                        |
| MRI          | Magnetic resonance image                              |
| NASCET       | North American symptomatic carotid                    |
|              | endarterectomy trial                                  |
| NIHSS        | National institute of health stroke scale             |
| NPO          | Nothing Per Os                                        |
| NS           | Non-significant                                       |
| P1           | The 1 <sup>st</sup> segment of the posterior cerebral |
| P2           | The 2 <sup>nd</sup> segment of the posterior cerebral |
| F &          | _                                                     |
| DC.          | Personal computer                                     |
| PCA          | Personal computer                                     |
| PCA          | Posterior cerebral artery                             |

| Abbreviation | Meaning                                     |
|--------------|---------------------------------------------|
| PCOM         | Posterior communicating artery              |
| PO           | Per Os                                      |
| RHV          | Rotating haemostatic valve                  |
| RR           | Relative risk                               |
| SAPPHIRE     | Stenting and angioplasty with protection in |
|              | patients at high risk for endarterectomy    |
| SBP          | Systolic blood pressure                     |
| SD           | Standard deviation                          |
| SES          | Self-expandable stents                      |
| SLE          | Systemic lupus erythematosis                |
| TCD          | Transcranial Doppler                        |
| TIA          | Transient ischemic attack                   |
| TMB          | Transient monocular blindness               |
| Tpa          | Tissue plasminogen activator                |
| UK           | United kingdom                              |
| Vs           | Versus                                      |

## **List of Figures**

| Fig. | Title                                       | Page |
|------|---------------------------------------------|------|
| 1    | Common aortic arch configurations.          | 4    |
| 2    | ECA branches                                | 7    |
| 3    | ICA segments by Gibo et al.,1981            | 9    |
| 4    | ICA segments by Bouthillier et al.,1996     | 10   |
| 5    | MCA segments.                               | 13   |
| 6    | ACA segments                                | 14   |
| 7    | Circle of Willis                            | 15   |
| 8    | ICA occlusion infarction.                   | 22   |
| 9    | MCA main stem infarction.                   | 24   |
| 10   | MCA superior division infarction.           | 24   |
| 11   | MCA inferior division infarction.           | 24   |
| 12   | ACA infarction.                             | 26   |
| 13   | Artery of Heubner infarction.               | 26   |
| 14   | AChA infarction.                            | 27   |
| 15   | B-mode and colour coded duplex.             | 30   |
| 16   | MRA showing left ICA stenosis.              | 33   |
| 17   | CTA showing left ICA stenosis               | 35   |
| 18   | DSA showing ICA stenosis.                   | 38   |
| 19   | Angiographic methods for measurement of     | 41   |
|      | carotid stenosis.                           |      |
| 20   | Carotid angiographic ulcer.                 | 42   |
| 21   | Calcified carotid atheromatous plaque.      | 43   |
| 22   | ICA string sign.                            | 45   |
| 23   | Different embolic protection devices during | 61   |
|      | carotid stenting.                           |      |

| Fig. | Title                                         | Page |
|------|-----------------------------------------------|------|
| 24   | The open and closed cell design carotid stent | 65   |
|      | designs.                                      |      |
| 25   | Distribution of the risk factors among all    | 91   |
|      | cases.                                        |      |
| 26   | Follow up brain DW-MRI for all cases.         | 97   |
| 27   | Number of risk factors per patient among the  | 99   |
|      | two study groups.                             |      |
| 28   | Clinical presentations of the two study       | 100  |
|      | groups.                                       |      |
| 29   | Mode of clinical presentation of the two      | 101  |
|      | study groups.                                 |      |
| 30   | Follow up brain DW-MRI of the two study       | 105  |
|      | groups.                                       |      |
| 31   | A case with open cell stent design.           | 106  |
| 32   | A case with open cell stent design            | 107  |
|      | complicated by MCA-M1 occlusion.              |      |
| 33   | A case with closed cell stent design.         | 108  |

## **List of Tables**

| Table | Title                                                    | Page |
|-------|----------------------------------------------------------|------|
| 1     | The anastomosis between the internal and the             | 8    |
|       | external carotid arteries.                               |      |
| 2     | Criteria of vulnerable atheromatous plaque.              | 19   |
| 3     | Risk factor modification treatment goals.                | 48   |
| 4     | High risk criteria for CEA.                              | 54   |
| 5     | Potential complications of CEA.                          | 54   |
| 6     | Contraindications for carotid stenting.                  | 54   |
| 7     | Advantages and disadvantages of cerebral                 | 60   |
|       | protection devices.                                      |      |
| 8     | Carotid artery stenting complications.                   | 62   |
| 9     | Age and sex characteristics of all cases.                | 68   |
| 10    | Distribution and stratification of the risk factors      | 90   |
|       | of all cases.                                            |      |
| 11    | Mode of presentation of all cases.                       | 91   |
| 12    | Initial brain DW-MRI findings of all cases.              | 92   |
| 13    | Carotid duplex findings of all cases.                    | 93   |
| 14    | Interventional details of all cases of the study.        | 95   |
| 15    | NIHSS of all cases before and after stenting.            | 96   |
| 16    | NIHSS changes to all cases from the baseline             | 96   |
|       | value to one month follow up.                            |      |
| 17    | NIHSS changes of the cases that deteriorated             | 97   |
|       | after CAS.                                               |      |
| 18    | Comparison of age and gender between the two             | 98   |
| 10    | study groups.                                            | 00   |
| 19    | Comparison of risk factors between the two study groups. | 98   |
|       | Stoups.                                                  |      |

| Table | Title                                              | Page |
|-------|----------------------------------------------------|------|
| 20    | Clinical presentations and initial DWI findings in | 100  |
|       | the two study groups.                              |      |
| 21    | Carotid duplex findings of the two study groups.   | 102  |
| 22    | DSA findings of the two study groups.              | 102  |
| 23    | Types of intervention of the two study groups.     | 103  |
| 24    | NIHSS assessment before and after stenting in the  | 104  |
|       | two study groups.                                  |      |
| 25    | NIHSS changes from the base line value to one      | 105  |
|       | month follow up in the two study groups.           |      |

#### **Stent Design in Management of Extracranial Carotid Stenosis**

#### Abstract

Ayman H. El Sudany, MSC <sup>1</sup>Amira A. Zaki , MD, <sup>1</sup> M. Ossama Abdulghani , MD, <sup>1</sup> Azza Abdel Naser, MD, <sup>1</sup> Salma H. Khalil , MD <sup>1</sup> and Ahmed El Bassiouny , MD, <sup>1</sup>.

<sup>1</sup>Neurology department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Corresponding author: Ayman Hassan Othman El Sudany.

**Email:** Aymanhsudany@ gmail.com **Telephone:** 01004174777

**Background:** Carotid artery stenting (CAS) had become widely used as an alternative to carotid endarterectomy (CEA) in revascularization therapy of carotid artery stenosis, especially in some high risk patients for surgical intervention.

**Objective:** The purpose of this study is to evaluate the effect of carotid artery stent design in the outcome of patients undergoing extracranial carotid artery stenting.

**Methods:** During a 30 month period , 50 cases were enrolled and underwent carotid artery stenting with open cell (Protégé® - EV3) or closed cell (Wall stent® - Boston scientific) stents . A filter device for embolic protection (Spider filter® - EV3) was used. Clinical assessment with the national institute of health stroke scale (NIHSS) together with post procedural diffusion-weighted magnetic resonance imaging (DW-MRI) were used to determine cerebral embolization.

**Results:** CAS was performed in 40 symptomatic cases (80%) and 10 asymptomatic cases (20%). A similar number of open-cell and closed-cell stents were used. New acute cerebral emboli were detected with DW-MRI in (6/50) of cases (12%) after the procedure. Three (3/50) cases (6%) showed corresponding clinical deterioration in NIHSS; two cases developed minor stroke and the third case developed a major stroke.

**Conclusion:** Cerebral embolization, as detected by brain DW-MRI, occurs more with open cell design than closed cell design stents but this was statistically non-significant. This randomized trial does not support the superiority of any stent design with respect to cerebral embolization.

**Key words:** Carotid artery stenting (CAS), brain DW-MRI, NIHSS.