Extracorporeal Carbon Dioxide Removal for Acute Respiratory Failure

Essay

Submitted for Partial Fulfillment for Master Degree of Intensive Care

By

Hossam Ahmed Hamed Hussein M.B., B.Ch. (2008)

Supervised By

Prof. Dr. Ayman Mokhtar Kamaly

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mohamed Abd Elsalam Elgendy

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

مَا الْفَضْلُ إِلا لأَهْلِ الْعِلْمِ إِنَّهُمُ *** عَلَى الْهُدَى لَهُدَى الْهُدَى لَا لَا لَكُلُ الْمَنْ الْمُتَهَدِّى أَدِلاَّعُ وَقَدْرُ كُلِّ الْمَرِئِ مَا كَانَ يُحْسِنُهُ *** والْجَاهِلُونَ لأَهْلِ الْعِلْمِ أَعْدَاءُ فَقُرْ بِعِلْمٍ وَلا تَطْلُبُ بِلهَ بَدَلاً *** فَالنَّاسُ مَوْتَى فَقُرْ بِعِلْمٍ وَلا تَطْلُبُ بِلهَ بَدَلاً *** فَالنَّاسُ مَوْتَى وَأَهْلُ الْعِلْمِ أَحْيَاء وَاهْلُ الْعِلْمِ أَحْيَاء وَاهْلُ الْعِلْمِ أَحْيَاء الله مِن أَبِي طَالِمِ وَحِيى الله مَنه -" علي بن أبي طالمِ ورجي الله منه -"

Acknowledgement

First and foremost, thanks to **Allah** for giving me the will and the patience to finish this work.

In a few grateful words, I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ayman**Mokhtar Kamaly, Professor of Anesthesiology, Intensive, Care and Pain Management, Faculty of Medicine-Ain Shams University, for his great concern and generous help. Without his generous help, this work would not have been accomplished in its present picture.

I am sincerely grateful to **Dr. Mohamed Abd Elsalam Elgendy,** Lecturer of Anesthesiology, Intensive
Care and Pain Management, Faculty of medicine, Ain Shams
University, for his kind help and constructive suggestions to
achieve this work.

I would also like to express my deep appreciation to **Dr. Berbara Yacoub** Salleb, Lecturer of Anaesthesiology, Intensive Care and Pain Management, Faculty of Medicine Ain Shams University, for her great kindness, constant assistance and guide.

HOSSAM AHMED HAMED

Contents

List of Abbreviations	j
List of Tables	V
List of Figures	vi
Introduction and Aim of the Work	1
Pathophysiology of acute respiratory failure	4
Management of acute respiratory failure	21
Extracorporeal Membrane Oxygenation for acute respiratory failure	48
Extracorporeal CO ₂ removal for acute respiratory failure	76
Summary	97
References	99
Summary in Arabic	

List of Abbreviations

ABG	Arterial blood gases
	American-European Consensus
AECC	Conference
ALI	Acute Lung Injury
ARDS	Acute respiratory distress syndrome
AVCO ₂ R	Arterio-Venous Carbon Dioxide Removal
BAL	Bronch-alveolar lavage
CAP	Community acquired pneumonia
CO	Cardiac output
CO ₂	Carbon dioxide
COPD	Chronic Obstructive Pulmonary Disease
CPAP	Continuous positive airway pressure
СРВ	Cardiopulmonary bypass
CPR	Cardiopulmonary Resuscitation
CT	Computed tomography
CVVH	Continuous veno-venous hemodialysis
Csr	Compliance
CXR	Chest x-ray
DAD	Diffuse alveolar damage
DIC	Disseminated Intravascular Coagultion
ECCO ₂ R	Extra-Corporeal Carbon Dioxide Removal
ECG	Electrocardiography
ECLS	Extra-Corporeal Life Support
ECMO	Extra-Corporeal Membrane Oxygenation
E-CPR	Extra-Corporeal Cardiopulmonary Resuscitation

List of Abbreviations (Cont.)

i.	
Esr	Elastance
FecO ₂	Oxygen fraction delivered by the
recO ₂	extracorporeal circuit
FIO ₂	Inspired oxygen concentration
FRC	Functional Resdial Capacity
HAP	Hospital-acquired pneumonia
HCAP	Health care associated pneumonia
HCO ₃	Bicarbonate
HIT	Heparin Induced Thrombocytopenia
ICAM	Intercellular adhesion molecule
UCI	Intensive Care Unit
IL	Interleukin
IMV	Invasive Mechanical Ventilation
IVOX	Intravascular Oxygenator
FGK	Keratocyte Growth Factor
LFPPV-	Low Frequency Positive Pressure
ECCO ₂ R	Ventilation Alongside Extracorporeal Co ₂
ECCO ₂ K	Removal
LPV	Lung Protective Ventilation
LV	Left Ventricle
LVAD	Left Ventricular Assist Device
MERS-CoV	Middle East Respiratory Syncatial Corona
MILIO-CU V	Virus
MLs	Membrane Lungs
MRSA	Methicilin-resistant staph. aures
NIPPV	Non-invasive positive pressure ventillation

List of Abbreviations (Cont.)

NIV	Non-invasive ventillation
O_2	Oxygen
PaCO ₂	Arteial pressure of Carbon dioxide
PAI-1	Plasminogen activator inhibitor-1
PALP	Pump Assisted Lung Protection
PAOP	Pulmonary artery wedge pressure
PAo ₂	Alveolar O ₂ Tension
PaO ₂	Arterial pressure of Oxygen
Paw	Airway pressure
Pb	Barometric pressure
PE	Pulmonary embolism
PEEP	Positive End Expiratory Pressure
PGF	Primary Graft Failure
PIO ₂	Inspired oxygen partial pressure
PP	Prone position
Pplat	Plateau Pressure
PVR	Pulmonary vascular resistance
RF	Respiratory failure
RV	Right ventricle
SOFA	Sepsis Related Failure Assesment
SPO ₂	Oxygen saturation level
TNF	Tissue Necrosis Factor
TRALI	Transfusion Acute Lung Injury
Tv	Tidal Volume
UFH	Unfractional Heparin
V/Q	Ventillation/perfusion
V-A ECMO	Veno-Arterial ECMO
VCO ₂	Carbon Dioxide Delivery
VILI	Ventillator Induced Lung Injury

List of Abbreviations (Cont.)

VO ₂	Oxygen Delivery
Vt	Tidal volume
V-V ECMO	Veno-Venous ECMO

List of tables

Table	Title	Page
1	Mechanisms of Respiratory Failure	6
2	American-European Consensus	12
	Conference and Berlin Definition of ARDS Definition	
3	Clinical features of respiratory failure	22
4	Biomarkers of acute lung injury	28
5	Recommended initial empirical	32
	treatment for nosocomial pneumonia	
6	Indications of intubation and	41
	mechanical ventilation	
7	Complication of mechanical	45
	ventilation	
8	Weaning of ECMO.	60
9	Indications for ECMO use	61
10	Indications and contra-indications for	62
	ECMO in ARDS	
11	Uses of ECMO in cardiac patient	67
12	Indications of ECMO and ECCO ₂ R	87
	devices	
13	Complications of Extracorporeal CO ₂	91
	removal	

List of Figures

Fig.	Title	Page
1	Normal and injured alveolus during	14
	the acute phase of ARDS	
2	CXR of a typical H1N1 ARDS	24
	patient. It shows lung fields	
	consolidated and devoid of aeration	
3	Antibiotic regimens for treatment of	33
	severe community-acquired pneumonia	
	in critically ill patients	
4	Practice guideline for the use of	39
	noninvasive positive-pressure	
	ventilation for treatment of acute	
	respiratory failure in patients with	
	chronic obstructive pulmonary	
	disease and congestive heart failure	
5	Peripherial veno-venous ECMO	51
6	Central veno-arterial ECMO	52
7	Arterio-venous ECMO	53
8	Diagram showing the basic principle of a	78
	membrane lung	
9	Types of ECCO ₂ R	79
10	AV-ECCO ₂ R	81
11	Diagram showing the Decap	85
12	Configurations of extracorporeal carbon	86
	dioxide removal (ECCO ₂ R) circuits.	

Introduction

Respiratory failure is defined as an inadequate oxygen delivery and carbon dioxide (CO_2) elimination at tissue level. At pulmonary level, This represents the inability of the respiratory system to cope with the metabolic needs of the body to oxygenate venous blood and remove CO_2 (*Grippi*, 1998).

Clinicians use the values of arterial pressure for oxygen (PaO_2) and carbon dioxide ($PaCO_2$) obtained from arterial blood gas analysis (ABG) which evaluate the ability of gas exchange at the pulmonary level. So, Respiratory Failure is defined as a disturbance in gas exchange in the respiratory system which produces values in the arterial ABG of $PaO_2 < 60$ mmHg (hypoxaemia) and/or a $PaCO_2 > 50$ mmHg (hypercapnoea) (*Roussos and Koutsoukou*, 2003).

Endotracheal intubation and subsequent mechanical ventilation are often a necessary and life-saving treatment for patients with severe respiratory failure. However, The side effects of intubation, invasive mechanical ventilation itself and the accompanying sedation may trigger a vicious cycle leading to prolonged weaning and may even contribute to mortality (*Esteban et al, 2002*).

In patients with acute hypercapnic respiratory failure, noninvasive ventilation (NIV) is a well-established means to support the failing ventilatory pump and thus to avoid intubation and invasive mechanical ventilation. However, This approach often fails for a variety of reasons and is therefore followed by intubation and invasive mechanical ventilation (*Ram et al*, 2004).

Introduction and Aim of the Work

Extracorporeal life support (ECLS) is an artificial means of providing oxygenation and CO₂ elimination in patients who have acute respiratory failure. ECLS is not a cure, but can temporarily support heart and lung function, which might provide time for injured lungs to recover and enable treatment of underlying disease. Advances in ECLS technology have reduced its complexity and increased its safety, which has led to a resurgence in its use (*MacLaren et al, 2012*).

Extracorporeal CO_2 removal devices are type of extracorporeal life support which allow uncoupling of ventilation from oxygenation, thereby removing CO_2 (Fitzgerald et al, 2014).

The use of extracorporeal CO_2 removal allowed avoiding intubation and invasive mechanical ventilation in the majority of patients with acute on chronic respiratory failure not responding to NIV (*Stefan et al, 2012*).

A solid indication for extracorporeal CO_2 removal devices is hypercapnia due to terminal lung failure during bridging to lung transplantation, pneumonia, and chronic obstructive lung disease or asthma (*Hermann et al*, 2014).

Aim of the Work

The aim of this essay is to revisit the acute respiratory failure as regard of its causative pathologies, clinical picture and different therapeutic modalities. The novel approach of Extracorporeal Carbon Dioxide removal in such pathology will be discussed heavily, as well as reviewing the recent advances in technology, techniques, indications, limitation, contraindication and complication if any.

Pathophysiology of Acute Respiratory Failure

The respiratory system consists of two parts: the lung and the pump that moves the lung (respiratory centers, spinal cord and respiratory peripheral nerves, respiratory muscles and chest wall). Failure of the lung is primarily manifested as hypoxemia (hypoxemic or type I failure; shunt physiology) and failure of the pump results mainly in hypercapnia (hypercarbic or type II failure; hypoventilation is the principal mechanism) (Sabin and Jayanta, 2014).

Alveolar O_2 tension (PAO₂) increases with increase in inspiratory O_2 tension and increase in ventilation. Extraction of O_2 from the alveolus is determined by the saturation, quality and quantity of the haemoglobin of the blood perfusing the alveoli. The O_2 saturation of the haemoglobin in the pulmonary capillary blood is affected by the supply of O_2 to the tissues (cardiac output) and the extraction of the O_2 by the tissues (metabolism) (**Praveen, 2003**).

In general, lower the haemoglobin saturation in the blood perfusing the pulmonary capillaries, a result of low cardiac output (increased tissue extraction) and/or increased tissue metabolism, higher the extraction of O_2 in the alveoli and lower the equilibration partial pressure of O_2 . Similarly the absolute quantity of haemoglobin in the circulating pulmonary blood also increases or decreases extraction of O_2 , though this particular factor is less important. The partial pressure of O_2 in the

alveolus is further affected by the partial pressure of CO₂ in the pulmonary capillary blood. Partial pressure of CO₂ in the alveolus is because of dynamic equilibrium between CO₂ transported to the alveolus and CO₂ removed from the alveolus. The partial pressure of CO₂ in the alveolus increases with the increase in tissue metabolism and in presence of low cardiac output (CO₂ produced in the tissues is transported in less amount of the venous blood) (**Praveen, 2003**).

Definition of respiratory failure:

Respiratory failure (RF) is defined as an inadequate oxygen delivery and carbon dioxide elimination at tissue level. At pulmonary level, this represents the inability of the respiratory system to cope with the metabolic needs of the organism, oxygenate venous blood and remove CO₂. However, due to the lack of direct measurements for these functions, clinicians use the values of arterial pressure for oxygen (PaO₂) and carbon dioxide (PaCO₂) obtained from arterial blood gas analysis (ABG) which evaluate the ability of gas exchange at the pulmonary level. This way, respiratory failure is defined as a disturbance in gas exchange in the respiratory system which produces in ABG a PaO₂ < 60 (hypoxaemia) and/or PaCO₂>50mmHg mmHg a (hypercapnoea) (Belda et al., 2013).

It is important whether hypoxemic respiratory failure is acute (over hours to days) or chronic (over weeks to months) as it has implications not just for diagnosis and treatment, but also for the physiologic adaptations to hypoxemia that develop over time. For