Acknowledgment

Firstly, I thank "Allah" for granting me the power to accomplish this work.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent **Professor. Mona Abd El-Kader Salem,** Professor of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for giving me the privilege of working under her meticulous supervision and for her generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Grateful acknowledgment and deep appreciation are conveyed to **Dr. Hatem Mohamed Abd-Allah** Assistant Professor of Radiation Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University for the great kindness, constant assistance and guidance.

I am greatly honored to express my sincere appreciation and gratitude to **Dr. Khaled kamal El-Din El-Ghoneimy,** Lecturer of Radiation Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University, for his kind supervision, enthusiastic guidance, and constant support.

Mohamed Reda Abu Al-Yazeed Kelaney

Contents

Subjects	
Page	
Introduction & Aim of the work	1
Epidemiology	6
Pathology	14
Prognosis	22
Diagnosis	•••••
-Clinical presentation	
-Differential Diagnosis	35
-Investigation	47
- Staging	51
Treatment	
- Treatment overview	53
Chemotherapy	57
-Metornomic chemotherapy	71
Targeted therapy	76
Secondry effect of chemotherapy	98
Loco-regional therapy	
-Mastectomy	
-Radiotherapy	109
Endocrinal therapy	134
Loco-regional Recurrence	146
Metastatic disease	159
Outcome and follow up	166
Summary	170
References	174
Arabic Summary	

List of Tables

Table No.	Title	Pag e
Table (1)	Classification of breast cancer subtypes by AJCC and SEER EOD staging	8
Table (2)	Differential diagnosis of IBC	35
Table (3)	A comparison of the clinicopathological features o (IBC), primary breast lymphoma (PBL) and axilliary lymphoma presenting as IBC (AL).	39
Table (4)	TNM staging of inoperable LABC/IBC	52
Table (5)	Results of Combined Modality Treatment Programs for Inflammatory Breast Carcinoma	55
Table (6)	Summary of clinical responses in five consecutive clinical trials for patients with IBC	63
Table (7)	Proposed mechanisms of trastuzumab action and resistance	84
Table (8)	Types of Mastectomies Used as Treatments for Breast Cancer	103
Table (9)	Review of Adjuvant Aromatase Inhibitor Trials	136
Table (10)	Examples of Commonly Used Endocrine Regimens in the Metastatic Setting	154
Table (11)	Examples of Commonly Used Endocrine Regimens in Metastatic Breast Cancer	156
Table (12)	Breast Cancer Follow-Up	169

List of figures

Figure No.	Title	Page
Fig. (1)	Age-specific incidence rates of breast cancer per 100 000 woman-years.	11
	1	
Fig. (2)	Inflammatory breast cancer with a	16
	characteristic tumor embolus in a dermal	
	lymphatic channel (A) and strong and crisp	
	membranous staining for E-cadherin in the	
	intralymphatic tumor cells (B).	
Fig. (3)	Primary inflammatory breast cancer with	16
	(A). Positive E-cadherin staining in the	
	malignant cells with classic lobular	
	morphology (B). The membranous staining	
	highlights the signet-ring cell features of	
	some of the neoplastic cells.	
Fig. (4)	Analysis of E-cadherin expression in	20
	inflammatory breast cancer (IBC) versus	
	non-IBC.	
Fig. (5)	Overall and progression-free survival	31
	according to clinical complete response	
Fig. (6)	peau d'orange	35
Fig. (7)	Patient with Idiopathic granulomatous	38
	mastitis	
Fig. (8)	Mammography	41
(9)		

List of figures (Cont.)

Figure	Title	Page
No.		1 ugc
Fig.	Mammography	42
(10)-		
(11)-(12)		
Fig. (13)	MRI of the breast in a patient with IBC	45
Fig.	PET	47
(14)-	PET/CT	
(15)		
Fig. (16)	Extensive dermal lymphatic	49
Fig. (17)	Lymphatics containing tumor cells invasion	49
	by cancer cells in IBc	
Fig. (18)	Tumor cells present in blood vessels	49
Fig. (19)	Treatment algorithm for inflammatory breast	56
Fig. (20)	Anthracycline structures	58
Fig. (21)	Structures of paclitaxel and docetaxel	60
Fig. (22)	Principle of metronomic therapy	73
Fig. (23)	Mechanism of action of Imatinib (small	78
	molecules)	
Fig. (24)	Mechanism of action of monoclonal antibody	81
Fig. (25)	A simplified illustration of key pathways involved in downstream signaling after HER2 activation.	83

Fig. (26)	Inhibition of receptor tyrosine kinase signaling. VEGF, vascular endothelial growth factor;	91
Fig. (27)	Ras effectors, downstream pathways and Mechanism of action of FTIs.	95
Fig. (28)	Mastectomy	105
Fig. (29)	Images of radiation treatment fields to treat the chest wall and internal mammary lymph nodes.	122
Fig. (30)	Images of radiation treatment fields using a match electron field technique to treat the chest wall and internal mammary lymph nodes	123
Fig. (31)	Image of a radiation treatment field used to treat the axillary apex/supraclavicular fossa.	123
Fig. (32)	Matching between SCV and tang field	127

List of Abbreviations

ABCSG	Austrian Breast and Colorectal Cancer Study
7 IDCSG	Group
ADCC	antibody dependent cell mediated cytotoxicity
ADCC	antibody dependent cell mediated cytotoxicity
AJCC	The American Joint Committee on Cancer
ASCO	The American Society of Clinical Oncology
ATAC	
ATAC	Arimidex, Tamoxifen, Alone or in
D.C.	Combination
BCT	Breast conservative therapy
BIG1-98	Breast International Group
CAM	complementary and alternative medicine
CAP	College of American Pathologists
COX-2	cyclooxygenase 2
DCIS	Ductal carcinoma insuto
DFS	Disease free survival
EOD- E	Extent of Disease – Extent
EOD-S	Extent of disease-s
EREG	Epiregulin a member of the epidermal growth factor
	family.
FDA	Food and Drug Administration
FISH	fluorescence in-situ hybridization
Flk-1	Fetal liver kinase1
FTIs	Farnesyltransferase Inhibitors
GnRH	gonadotropin-releasing hormone
H&E	Haematoxilin and Eosin
HD-CT	high-dose chemotherapy
HDI	HER-dimerization inhibitors
IBC	Inflammatory breast cancer
IES	Intergroup Exemestane Study
ITA	the Italian Tamoxifen Arimidex
Ki67/MIB1	the cell proliferation marker
LABC	Locally advanced breast cancer
LHRH	Lutinizing hormone releasing hormone

MHz	Mega hertz
MMP-9	matrix metalloproteinase-9
MRI	Magnetic Resonance Imagining
MTD	Maximum Tolerated Dose
MTT	Molecular targeted therapy
MTT	Molecular targeted therapy
MUC1	a transmembrane mucin that is highly expressed in various cancers
MVD	Microvessel density
MYCN	V-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian), also known as MYCN, is a human gene.
OFS	Ovarian function suppression
OS	overall survival
ORR	overall response rate
PAI-1	plasminogen Activator Inhibitor
PET	Positrone emission tomography
PEV	Poussee Evolutive
PEV	Pousee Evolitive
PTEN	The tumour-suppressor phosphatase with tensin homologue (PTEN
RhoC-	Ras homolog gene family, member C) guanosine
GTPase	triphosphate.
Rt-PCR	Polymerase chain reaction
SEER	Surveillance, Epidemiology, and End Results
SERMs	Esteron receptor modulator
SHH	Sonic hedgehog protein precursor
TKI	tyrosine kinase inhibitor
TNF	Tumor Necrosis Factor
ULABC	Unresectable Locally advanced breast cancer
uPA	urokinase plasminogen activator
VEGF	Vascular Endothelial Growth Factor
VEGFR1	vascular endothelial growth factor
	receptor1/Flt-1

INTRODUCTION

nflammatory breast cancer is a rare but aggressive of breast cancer, which historically subtype considered uniformly fatal, it is accounts for about 5% of all cases of breast cancer (Levine et al., 2003). In general, women with inflammatory breast cancer present at a younger age are more likely to have metastatic disease at diagnosis, and have shorter survival than women with noninflammatory breast cancer (Levine et al., According to the latest revision of the American Joint Committee on Cancer staging guidelines, inflammatory carcinoma is classified at T4d, which makes all patients with inflammatory carcinoma stage IIIB, IIIC, or IV depending on the nodal status and presence of distant metastases (Singletary et al., 2002).

Clinically, inflammatory breast cancer is characterized by the rapid onset of breast warmth, erythema, and edema (peau d'orange) often without a well-defined mass. Along with extensive breast involvement, women with inflammatory carcinoma often have early involvement of the axillary lymph nodes. The rapidity of growth can be used to distinguish true 'primary' inflammatory carcinoma from neglected locally advanced breast tumors that have developed inflammatory features ('secondary' inflammatory carcinomas) (*Taylor et al.*, *1998*). The mammographic appearance of inflammatory breast cancer differs from other

breast tumors because less than half will show a discrete mass (*Kushwaha et al.*, 2000). However, other abnormal findings such as skin thickening, trabecular thickening, and axillary adenopathy are present in the majority of patients (*Ueno et al.*, 2007).

Inflammatory breast carcinoma is not associated with a particular histological subtype and can occur in association with infiltrating ductal or lobular, small cell, medullary, and large cell carcinomas. The characteristic pathologic finding is dermal lymphatic invasion by carcinoma, which can lead to obstruction of the lymphatic drainage causing the clinical picture of erythema and edema (*Jaiyesimi et al.*, 2002).

The most significant prognostic factor for women with inflammatory breast cancer is the presence of lymph node involvement. Patients with lymph node involvement have shorter disease-free and overall survival than patients with node-negative disease (Ueno et al., 2007). Extensive erythema, the absence of estrogen receptor, and the presence of mutations in the p53 gene have also been outcomes associated with poorer in patients with inflammatory carcinoma of the breast (Riou et al., 2003). Because most women with inflammatory carcinoma do not have discrete masses, tumor size does not have the same prognostic value as in women with non-inflammatory carcinoma.

Inflammatory carcinoma of the breast has distinct biological characteristics that differentiate it from noninflammatory carcinoma. These tumors more often have a high S-phase fraction, are high-grade, are aneuploid, and lack hormone receptor expression (Aziz et al., 2001). In addition to having different rates of expression of many standard prognostic markers, inflammatory breast cancers can also be differentiated by their highly angiogenic and vascular characteristics. The high levels of members of the VEGF family might account for tumor neovascularization and the lymphotactic process in inflammatory breast cancer. Inflammatory breast cancers might also be more likely to express E-cadherin, a trans-membrane glycoprotein that mediates cell-cell adhesion, and may contribute to the aggressive lymphovascular invasion seen in inflammatory cancers (Tomlinson et al., 2001).

Van Golen and colleagues reported that the overexpression of *RhoC GTPase* and the loss of expression of *LIBC* (lost in inflammatory breast cancer) were highly correlated with an inflammatory carcinoma phenotype. These genes remain a promising avenue for future investigation (*Van Golen et al.*,2002).

The treatment of inflammatory breast cancer requires careful coordination of care between the medical, surgical, and radiation oncologists because most patients will be treated with a combination of these therapeutic modalities. The initial component of therapy should be induction chemotherapy. Many different regimens have been used, most of which are anthracycline-based. Ueno and colleagues found that 71% of all patients had a response to anthracycline-based induction chemotherapy, with 12% of patients achieving a complete response In addition; initial response to induction chemotherapy was an important predictor of survival (*Ueno et al.*, 2007).

induction chemotherapy, patients proceed with definitive local therapy with radiation, surgery, or both. Considerable controversy still exists as to the optimal local treatment (De Boer et al., 2000). Even after induction chemotherapy and local therapy, the rates of high. Thus, further relapse remain very adjuvant chemotherapy with either an Anthracycline or a Taxane after local treatment. Finally, patients with estrogen or progesterone receptor-positive tumours should receive 5 years of adjuvant hormonal therapy with either tamoxifen or anastrazole. The role of high-dose chemotherapy followed autologous cell transplantation stem remains experimental (De Boer et al., 2000).

AIM OF THE WORK

The aim of this essay is to revise the recent advances and multi-disciplinary approaches in the management of inflammatory breast cancer aiming at improving survival and quality of life.

EPIDEMIOLOGY

Breast cancer is the second most common cause of death in all cancer female patients in USA; It is estimated that 184,450 new cases of invasive breast cancer will be diagnosed among women, of which approximately 40,930 women are expected to die from it in the year 2008 (*Jemal et al.*,2007).

The crude incidence of breast cancer in Europe is 109.8/100.000 women per year and it is responsible for 38.4 out of 100.000 deaths per women annually (*Pestalozzi et al.*, 2005).

In Egypt, breast cancer is the most common cancer in females, it represents 37.6% of all cancer cases in Gharbia cancer registry 1999 and 37.5% of all cancer cases presented to the NCI between the year 2002 and 2004 (*NCI*, 2005).

IBC is rare in the United States and Western Europe, accounting for only 2.0% of all breasts with an overall incidence of 2.5 per 100,000 women per years (*Hance et al.*, 2005).

Possibly because of varying case definitions, population-based estimates for IBC incidence range widely, from <1% to 10%. For example, using codes from the Surveillance, Epidemiology, and End Results (SEER)