

GENETIC POLYMORPHISM OF SOME GENES RELATED TO REPRODUCTION IN THE RIVER BUFFALO

Thesis
Submitted to Faculty of Science
Ain Shams University

For the degree of Master of Science

By Dalia Mamdouh Mabrouk Mostafa

(B.Sc. Zoology)

Supervised by

Prof. Dr. Nagwa H. A. Hassan Professor of Cytogenetics Zoology Department Faculty of Science Ain Shams University Prof. Dr. Kamelia B. Abd El Aziz Professor of Animal Genetics Cell Biology Department National Research Center

Prof. Dr. Sahar S. E. Ahmed Professor of Animal Biotechnology and Molecular Genetics Cell Biology Department National Research Center

> Zoology Department Faculty of Science Ain Shams University

7.11

التباين الوراثى لبعض الجينات المرتبطة بالتكاثر في الجاموس النهرى

رسالة مقدمة إلى كلية العلوم- جامعة عين شمس قسم علم الحيوان

للحصول على درجة الماجستير في العلوم

مقدمة من داليا ممدوح مبروك مصطفى تحت إشراف

أ.د. كاميليا بدرخان عبد العزيز أستاذ وراثة الحيوان- قسم بيولوجيا الخلية المركز القومي للبحوث أ.د. نجوى حسن على حسن أستاذ الوراثة الخلوية- قسم علم الحيوان كلية العلوم- جامعة عين شمس

أ.د. سحر سعد الدين أحمد أستاذالبيوتكنولوجي والوراثة الجزيئية للحيوان قسم بيولوجيا الخلية المركز القومي للبحوث

قسم علم الحيوان- كلية العلوم جامعة عين شمس القاهرة - ٢٠١١

جامعة عين شمس كلية العلوم

رسالة ماجستير

اسم الطالب: داليا ممدوح مبروك مصطفى

عنوان الرسالة: "التباين الوراثي لبعض الجينات المرتبطة بالتكاثر في الجاموس النهرى".

اسم الدرجة: الماجستير في العلوم

لجنة الاشراف:

١) أ.د. نجوى حسن علي حسن أستاذ الوراثة الخلوية - قسم علم الحيوان -كلية العلوم- جامعة عين شمس.

٢) أ.د. كاميليا بدرخان عبد العزيز أستاذ وراثة الحيوان - قسم بيولوجيا الخلية - المركز القومي للبحوث.

٣) أ.د. سحر سعد الدين أحمد أستاذالبيوتكنولوجي والوراثة الجزيئية للحيوان - قسم بيولوجيا الخلية-

المركز القومى للبحوث.

لجنة التحكيم:

1) أ.د. محمد أكمل عبد الرحيم الغر أستاذ الوراثة – قسم علم الحيوان - كلية العلوم- جامعة القاهرة.

٢) أ.د. فوزية عبد الفتاح علي أستاذ الوراثة قسم الوراثة والسيتولوجي المركز القومى للبحوث.

٣) أ.د. نجوى حسن على حسن أستاذ الوراثة الخلوية - قسم علم الحيوان - كلية العلوم - جامعة عين شمس.

ع) أ.د. كاميليا بدرخان عبد العزيز أستاذ وراثة الحيوان - قسم بيولوجيا الخلية - المركز القومى للبحوث.

تاريخ البحث: / / ٢٠١١ م

ختم الاجازة: / / ٢٠١١

الدراسات العليا اجيزت الرسالة بتاريخ / / ٢٠١١

موافقة مجلس الجامعة

موافقة مجلس الكلية / / ۲۰۱۱

جامعة عين شمس كلية العلوم

صفحة العنوان:

اسم الطالب: داليا ممدوح مبروك مصطفى

الدرجة العلمية: الماجستير في العلوم

القسم التابع له: قسم علم الحيوان

اسم الكلية: كلية العلوم

الجامعة: عين شمس

سنة التخرج: ٢٠٠٤

سنة المنح: ٢٠١١

جامعة عين شمس كلية العلوم

شكر السادة الأساتذة الذين قاموا بالاشراف وهم:

١) أ.د. نجوى حسن علي حسن

أستاذ الوراثة الخلوية - - قسم علم الحيوان - كلية العلوم - جامعة عين شمس.

٢) أ.د. كاميليا بدرخان عبد العزيز

أستاذ وراثة الحيوان - قسم بيولوجيا الخلية - المركز القومى للبحوث.

٣) أ.د. سحر سعد الدين أحمد

أستاذالبيوتكنولوجي والوراثة الجزيئية للحيوان - قسم بيولوجيا الخلية - المركز القومي للبحوث.

وكذلك الهيئات:

- ١) كلية العلوم- جامعة عين شمس
- ٢) المركز القومي للبحوث- قسم بيولوجيا الخلية

Dedication

I DEDICATE THIS WORK WITH ALL MY LOVE

TO MY PARENTS;

TO MY BROTHER SHERIEF.

TO MY COUNTRY EGYPT.

Acknowledgement

First, foremost, and all thanks to Allah by whose grace this work has been completed and by whose grace all my life is arranged in the best. Nobody can imagine this way that had been drawn by the mercifulness of the God.

After thanking Allah, I would like to express my unlimited thanks to my parents. I can not evaluate their efforts which extend all imagination and all limits from my birth till now to render me happy and successful. So, all my success is their success.

I would like to express my deepest respect and sincere gratitude to *Prof. Dr. Nagwa Hassan Ali*, Professor of Cytogenetics, Zoology department, Faculty of science, Ain Shams University; for her continuous, valuable help and mainly for giving me the honor of working under her supervision.

I would like to express my respect and sincere appreciation towards *Prof. Dr. Kamelia B. Abd El Aziz*, Professor of Animal Genetics, Cell Biology Department, and National Research Center; for her help and generous supervision.

I also wish to record my thanks to *Prof. Sahar S. E. Ahmad*, Professor of Animal Biotechnology, Cell Biology Department, and National Research Center; for her help and active supervision.

I can not forget the great effort which exerted by my colleagues at Cell Biology Department, National Research Center, to make me pass the first steps to learning Molecular Biology.

I will not forget to thank all my real friends for their encouragement to exceed all barriers in my way and during the hard times.

ABBREVIATIONS

%C:	Percent of cross linking
AFLP:	Amplified fragment length polymorphism
APS:	Ammonium per sulphate
bp:	Base pair
CI:	Calving interval
ddH ۲ ·:	Deionized water
DNA:	Deoxyribonucleic acid
dNTP:	Y-deoxyguanosine o-triphosphate
dNTP:	Y-deoxyribonucleoside o- triphosphate
EDTA:	Ethylenediaminetetraacetic acid
FSH:	Follicular stimulating hormone
FSHR:	follicular Stimulating hormone receptor
IGF-I:	Insulin growth factor-\
IGF-IR:	Insulin growth factor-\ receptor
INHBA:	Inhibin beta A
MAS:	Marker assisted selection
PCR:	Polymerase chain reaction
QTL:	Quantitative trait locus
RAPD:	Random amplified polymorphism DNA
RFLP:	Restriction fragment length polymorphism
Rpm:	Round per minute
SDS:	Sodium Dodecyle Sulphate
SNP:	Single nucleotide polymorphism
SSCP:	Single strand conformation polymorphism
ssDNA:	single strand DNA
STAT°A:	Signal transducer and transcriptor • A
TEMED:	N, N, N', N'-Tetramethylethylene-diamine
UV:	ultraviolet

ABSTRACT

The study was preliminary attempt to establish the association between reproductive trait and genetic polymorphism in five candidate genes (FSHR, IGF-I, IGF-IR, INHBA and STAT°A) in Egyptian buffalo using Single Strand Conformation Polymorphism (SSCP) technique.

The results confirmed that the candidate gene approach was proposed as a procedure to identify genes with significant effects for possible use in the improvement of farm animal productivity.

Keywords: Calving interval, Candidate genes, Genetic polymorphism, Reproductive trait and Single Strand Conformation Polymorphism

CONTENTS

Title	Page number
Abstract	Ι
List of Figures	П
List of Tables	V
Introduction and Aim of the work	VI
CHAPTER I: LITERATURE OF REVIEW	١
1,1. Egyptian Buffalo	١
1,7. Marker Assisted Selection	۲
۱٫۳. Quantitative approaches	٤
۱٫٤. Quantitative trait loci	٥
o. Candidate gene approach	٨
۱٫۰٫۱. General Description	٨
۱٫۰,۲. Advantages and Disadvantages of candidate gene approach	٩
۱٫٦. Molecular Markers	9
۱٫٦٫۱. Restriction fragment length polymorphism	11
۱٫٦,١,١. Advantages and Disadvantages	١٢
۱٫٦,۲. Single strand conformation polymorphism	١٢
1,7,7,1. Advantages and disadvantages	١٤
۱٫٦٫۳. Microsatellite	١٤
۱٫٦,٤. Random amplified polymorphic DNA	10

	1
1,7,0. Amplified fragment length polymorphism	١٦
۱٫٦٫٦. Single nucleotide polymorphism	14
Y, Y. Genes Chosen	14
۱,۷,۱. Follicle-Stimulating Hormone Receptor	١٨
۱,۷,۱,۱. Biology and role	١٨
۱,۷,۱,۲. Previous studies	۲.
', ', '. Insulin-like growth factor-I and Insulin-like growth factor-I receptor	*1
۱,۷,۲,۱. Biology and role	71
۱,۷,۲,۱.A. Insulin-like growth factor-I	77
۱,۷,۲,۱.B. Insulin-like growth factor-I receptor	74
۱,۷,۲,۲. Previous studies	7 £
۱,۷. ۳. Inhibin beta-A gene	77
۱٫۷٫۳٫۱. Biology and role	77
۱٫۷٫۳٫۲. Previous studies	7.7
۱٫۷٫٤. Signal Transducers and Activators of Transcription A	79
۱٫٧٫٤٫۱. Biology and role	79
۱,۷,۲,۲. Previous studies	٣١
CHAPTER II: MATERIALS AND METHODS	70
T, Materials	70
۳,۱,۱ Animals	80

T,1,7 Chemicals	70
T,1,T Buffers and Solutions	٣٧
T, T Methods	٤٠
۳,۲,۱ DNA extraction	٤٠
۳,۲,۱,۱ First day	٤٠
۳,۲,۱,۲ Second day	٤٠
۳,۲,۲ DNA concentration and purity determination	٤١
۳,۲,۳ DNA amplification by Polymerase chain reaction	٤١
۳٫۲٫٤ Detection of PCR products by electrophoresis on agarose gel	٤٤
۳,۲,0 Single strand conformation polymorphism technique	20
۳,۲,٦ Silver staining	٤٦
۳,۲,۷ Data analysis	٤٧
CHAPTER III: RESULTS	٤٨
CHAPTER IV: DISCUSSION	٨٦
CHAPTER V: REFERENCES	9.A
Summary and Conclusion	١٢٦
Arabic Summary	i
Arabic Abstract	iii
	l .

LIST OF FIGURES

Figure	Title	Page
(1)	Agarose gel viewed under UV light after ethidium bromide staining showing a ۲۳۰ bp amplified fragment of FSHR gene.	٥٣
(٢)	Silver stained polyacrylamide (\\\') gel showing three SSCP patterns of a \\' bp amplified fragment of FSHR gene (exon \\).	0 2
(٣)	The frequency of SSCP patterns of FSHR gene locus in V· tested animals.	00
(٤)	The frequency of SSCP patterns of FSHR gene locus in a symmetry animals.	٥٦
(0)	The frequency SSCP patterns of FSHR gene locus in each group of fertility.	٥٧
(٢)	Calving interval (mean \pm s.e) in high and low fertility groups for each pattern of FSHR gene locus.	٥٨
(Y)	Agarose gel viewed under UV light after ethidium bromide staining showing a ۲٦٠ bp amplified fragment of IGF-I gene (°'- flanking region).	٦١
(^)	Silver stained polyacrylamide (\\\') gel showing two SSCP patterns of a \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٦٢
(٩)	The frequency of SSCP patterns of IGF-I gene locus in V· tested animals.	٦٣
(1.)	The frequency of SSCP patterns IGF-I gene locus in [£] v animals.	٦٤
(11)	The frequency of SSCP patterns of IGF-I gene locus in each group of fertility.	٦٥

(11)	Calving interval (mean± s.e) in high and low fertility groups for each pattern of IGF-I gene locus.	77
(17)	Agarose gel viewed under UV light after ethidium bromide staining showing a TTO bp amplified fragment of IGF-IR gene.	79
(11)	Silver stained polyacrylamide (۱۲%) gel showing four SSCP patterns of a ۳۳0 bp amplified fragment of IGF-IR gene.	٧.
(10)	The frequency of SSCP patterns of IGF-IR gene locus in \vee · tested animals.	٧١
(17)	The frequency of SSCP patterns of IGF-IR gene locus in ⁵ v animals.	٧٢
(۱۷)	The frequency of SSCP patterns of IGF-IR gene locus in each group of fertility.	٧ ٣
(١٨)	Calving interval (mean \pm s.e) in high and low fertility groups for each pattern of IGF-IR gene locus.	> ٤
(19)	Agarose gel viewed under UV light after ethidium bromide staining showing a YYY bp amplified fragment of INHBA gene.	<
(۲۰)	Silver stained polyacrylamide (\\\') gel showing one SSCP pattern of a \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VV
(٢١)	Agarose gel viewed under UV light after ethidium bromide staining showing a YYO bp amplified fragment of STATOA gene (exonY).	٨.