

INVESTEGATING THE EFFECT OF BRACING AND NUMBER OF BAYS ON THE VALUE OF RESPONSE MODIFICATION FACTOR

By

Abdelrahman Sobhy Mohamed El Tanashy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

INVESTEGATING THE EFFECT OF BRACING AND NUMBER OF BAYS ON THE VALUE OF RESPONSE MODIFICATION FACTOR

By
Abdelrahman Sobhy Mohamed El Tanashy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Walid Abdel Latif Attia

Dr. Emad Abd Elrahman Marey

Professor of Structural Analysis and Mechanics

Structural Engineering Department
Faculty of Engineering, Cairo
University

Dr. Emad Abd Elrahman Marey

Lecturer
Civil Engineering Department
Higher Institute Of Engineering
El-Shorouk Academy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

INVESTEGATING THE EFFECT OF BRACING AND NUMBER OF BAYS ON THE VALUE OF RESPONSE MODIFICATION FACTOR

By Abdelrahman Sobhy Mohamed El Tanashy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
STRUCTURAL ENGINEERING

Approved by Examining Committee: Prof. Dr. Walid Abdel Latif Attia , Thesis Main Advisor Prof. of Structural Analysis and Mechanics, Cairo University Prof. Dr. Ahmed Hassan Amer , Internal Examiner Prof. of Structural Analysis and Mechanics, Cairo University Prof. Dr. Hatem Hamdi Ghith , External Examiner Prof. of Reinforcement Concrete Structures, Housing and Building National Researches Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Abdelrahman Sobhy Mohamed El Tanashy

Date of Birth: 17 /02 /1991 **Nationality:** EGYPTIAN

E-mail: Rahmesubhe@yahoo.com

Abdelrahman sobhy@Cic-Cairo.com

Phone: +20-01061316048

Address: 3 El-sawahel St., Warak, Giza

Registration Date: 01 / 10 / 2012
Awarding Date:/ 2017
Degree: Master of Science
Department: Structural Engineering

Supervisors:

Prof. Dr. Walid Abdel Latif Attia

Dr. Emad Mohamed Marey, Civil Engineering
Department Higher Institute Of Engineering El-

Shorouk Academy

Examiners:

Prof. Dr. Hatem Hamdi Ghith, Housing and

Building National Researches Center

Prof. Dr. Ahmed Hassan Amer Prof. Dr. Walid Abdel Latif Attia

Title of Thesis:

INVESTEGATING THE EFFECT OF BRACING AND NUMBER OF BAYS ON THE VALUE OF RESPONSE MODIFICATION FACTOR

Key Words:

Nonlinear static analysis; Response modification factor; Dual system; RC X-bracing, plastic hinge.

Summary:

The current study involves the parametric study of 2D reinforced concrete moment resisting frames to investigate the effect of having concrete X-bracing on response modification factor and it's components for RC frames which designed based on ECP-201, 2012 and ECP-203, 2007. This study carried out for three groups of systems with different configurations. The aim of this study gained after studying sixteen regular RC models. RC models were modeled and analyzed by SAP 2000 software by using non-linear static pushover analysis. The results of non-linear static pushover analysis are presented in parametric changing based on number of storeys and the position of X-bracing and their effect on response modification factor, ductility factor, overstrength factor, plastic hinge mechanism and pushover curve. Knowing that the gross moment of inertia was taken into account for all models, also it's considered nonlinearity of material.

Acknowledgments

Always and forever, all the lauds and thanks to Allah Almighty for helpings to finish this thesis.

The completion of this study marks the end of a significant effort that never would have been fulfilled without the support of several people. First, I would like to thank my parents who spend all their life to help me. Their encouragement was instrumental in helping me achieve my goals.

I would like to recognize my dissertation supervisors Prof. Waleed Abdel Latif and Dr. Emad Marey for their effort. They spent countless hours offering me guidance and support. I am appreciative of their unwavering support through this process.

I'd like to say thanks to my friends, specially my devoted friends who didn't leave me by itself during this time period of energy, specially my dear friends Ahmed Atef, Ismail Kotb, Karim Nabil who helped and encouraged me a lot.. Finally, thanks to everyone helped me in this thesis.

DEDICATION

I dedicate this thesis to my grandfathers and grandmother, the strongest persons I know. Allah Almighty rest and bless their souls.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VII
LIST OF FIGURES	VIII
NOMENCLATURE	XVI
ABSTRACT	XVIII
CHAPTER 1 INTRODUCTION	1
1.1. General	1
1.2. OBJECTIVES AND SCOPE OF THE RESEARCH	1
1.3. Overview	2
CHAPTER 2 LITERATURE REVIEW	3
2.1. Introduction	3
2.2. RESPONSE MODIFICATION FACTOR DEFINITION AND IT'S COMPONENTS	
2.2.1. Definition	
2.2.2. Components	
2.2.3. Overstrength factor (R _s)	
2.2.3.1. Local Overstrength	
2.2.3.2. Global overstrength.	
2.2.4. Ductility reduction factor (R_{μ})	
2.3. RESPONSE MODIFICATION FACTOR (R) IN SEISMIC BUILDING CODES	
2.4. Non-Linear Static Analysis (Pushover Analysis) Definition	
2.4.1. Definition	
2.4.2. Plastic hinge simplification	
2.4.2.1. Plastic Deformation Curve	27
2.4.3. The idealized force deformation curve	28
2.4.4. Pushover curve idealization methods	30
2.4.4.1. Paulay and Priestley method [59]	30
2.4.4.2. ATC-40 method [52]	30
2.4.4.3. FEMA 356 method [49]	31
2.4.4.4. EC8 method [57]	32
CHAPTER 3 METHODOLOGV	2/

3.1. GENERAL	34
3.2. CRITERIA OF STRUCTURAL MODELS	34
3.2.1. Geometry	34
3.2.2. Design codes	
3.2.3. Materials	45
3.2.4. Loads	45
3.2.4.1. Gravity Loads	
3.2.4.2. Lateral Loads	
3.2.4.2.1. Seismic loads	46
3.2.4.2.1.1. Equivalent static analysis	
3.2.5. Design of sections	
3.2.5.1. Reinforcement and dimensions limitation	
3.3. MODELING PROCESS	49
3.3.1. Software Modeling (SAP 2000 Program)	49
3.3.2. Material Modeling	49
3.3.2.1. Concrete	49
3.3.2.2. High grade steel bars	50
CHAPTER 4 RESULTS OF THE ANALYSIS	52
4.1. General	
4.2. Group 1 (models with three bays)	52
4.2.1. Three storey model	52
4.2.1.1. Plastic hinge mechanism	
4.2.1.2. Pushover curve and calculation of R factor	
4.2.2. Five storey model	
4.2.2.1. Plastic hinge mechanism	
4.2.2.2. Pushover curve and calculation of R factor	
4.2.3. Seven storey model	
4.2.3.1. Plastic hinge mechanism	
4.2.3.2. Pushover curve and calculation of R factor	
4.2.4. Nine storey model	
4.2.4.1. Plastic hinge mechanism	
4.2.4.2. Pushover curve and calculation of R factor	
4.2.5. Eleven storey model	
4.2.5.1. Plastic hinge mechanism	
4.2.6. Thirteen storey model	
4.2.6.2. Pushover curve and calculation of R factor	
4.2.7. Ductility reduction factor $(R\mu)$	
* * * *	
4.2.8. Overstrength factor (R _s)	
4.2.9. Response modification factor (R)	
4.3. GROUP 2 (MODELS WITH FOUR BAYS)	
4.3.1. Three storey model	
4.3.1.1. Plastic hinge mechanism	
4.3.1.2. Pushover curve and calculation of R factor	
4.3.2. Five storey model	
4. J.Z. I. FIASHC HIRPE INECHANISHI	

4.3.2.2. Pushover curve and calculation of R factor	81
4.3.3. Seven storey model	82
4.3.3.1. Plastic hinge mechanism	82
4.3.3.2. Pushover curve and calculation of R factor	84
4.3.4. Nine storey model	86
4.3.4.1. Plastic hinge mechanism	
4.3.4.2. Pushover curve and calculation of R factor	
4.3.5. Eleven storey model	89
4.3.5.1. Plastic hinge mechanism	89
4.3.5.2. Pushover curve and calculation of R factor	91
4.3.6. Thirteen storey model	93
4.3.6.1. Plastic hinge mechanism	93
4.3.6.2. Pushover curve and calculation of R factor	95
4.3.7. Ductility reduction factor (Rμ)	96
4.3.8. Overstrength factor (R _s)	97
4.2.9. Response modification factor (R)	
4.4. GROUP 3 (MODELS WITH FIVE BAYS)	
4.4.1. Three storey model	
4.4.1.1. Plastic hinge mechanism	
4.4.1.2. Pushover curve and calculation of R factor	
4.4.2. Five storey model	103
4.4.2.1. Plastic hinge mechanism	
4.4.2.2. Pushover curve and calculation of R factor	
4.4.3. Seven storey model	107
4.4.3.1. Plastic hinge mechanism	107
4.4.3.2. Pushover curve and calculation of R factor	110
4.4.4. Nine storey model	112
4.4.4.1. Plastic hinge mechanism	112
4.4.4.2. Pushover curve and calculation of R factor	
4.4.5. Eleven storey model	
4.4.5.1. Plastic hinge mechanism	
4.4.5.2. Pushover curve and calculation of R factor	120
4.4.6. Thirteen storey model	122
4.4.6.1. Plastic hinge mechanism	122
4.4.6.2. Pushover curve and calculation of R factor.	
4.4.7. Ductility reduction factor (Rµ)	
4.4.8. Overstrength factor (R_s)	
4.4.9. Response modification factor (R)	
4.4.7. Response mounication factor (K)	130
CHAPTER 5 SUMMARY AND CONCLUSION	132
5.1. General	132
5.2. SUMMARY DUE TO NUMBER OF STOREYS	132
5.2.1. Group 1 (models with three bays)	132
5.2.1.1. Ductility reduction factor	
5.2.1.2. Overstrength factor	
5.2.1.3. Response modification factor	
5.2.2. Group 2 (models with four bays)	
5.2.2.1. Ductility reduction factor	

5.2.2.2. Overstrength factor	133
5.2.2.3. Response modification factor	133
5.2.3. Group 3 (models with five bays)	134
5.2.3.1. Ductility reduction factor	134
5.2.3.2. Overstrength factor	
5.2.3.3. Response modification factor	134
5.3. SUMMARY OF RESULTS ACCORDING TO THE NUMBER OF BAYS FOR THIRTEEN STOREYS	
MODELS	
5.3.1. Response modification factor	135
5.4. Summary of non linear static analysis for models with thirteen storeys	
5.4.1. Three bays models	136
5.4.2. Four bays models	136
5.4.3. Five bays models	136
5.3. CONCLUSION	137
5.4. RECOMMENDATION FOR FUTURE STUDIES.	137
REFERENCES	138
APPENDIX A:GEOMETRY, CONCRETE DIMENSIONS, AND	RFT
OF THE STUDIED GROUPS	143
A.1. CONCRETE DIMENSION	143
A.2 REINFORCEMENT	197

List of Tables

Table 2.1: Values of Rs obtained by Balindera and Huang
Table 2.2: Values of constants (bT1, aT2, bT2)
Table 2.3: Values of constants (aq1, bq1, aq2, bq2)
Table 2.4: Coefficients to compute strength reduction factor by Nasser and Krawinkler
[35]
Table 2.5: Coefficients to compute strength reduction factor by Lai Riddell, Hidalgo and
Cruz [37]
Table 2.6: Coefficients to compute strength reduction factor by Lai and Biggs [42] 23
Table 2.7: R-factor values in different seismic design codes for RC Braced systems 25
Table 4.1: Ductility reduction factors against number of floors for intermediate bracing,
terminal bracing and without bracing models
Table 4.2: Overstrength factors against number of floors for intermediate bracing,
terminal bracing and without bracing models
Table 4.3: Response modification factor against number of floors for intermediate
bracing, terminal bracing and without bracing models
Table 4.4: Ductility reduction factors against number of floors for intermediate bracing,
terminal bracing and without bracing models96
Table 4.5: Overstrength factors against number of floors for intermediate bracing,
terminal bracing and without bracing models
Table 4.6: Response modification factor against number of floors for intermediate
bracing, terminal bracing and without bracing models
Table 4.7: Ductility reduction factors against number of floors for intermediate bracing,
interior bracing, terminal bracing and without bracing models
Table 4.8: Overstrength factors against number of floors for intermediate bracing,
interior bracing, terminal bracing and without bracing models
Table 4.9: Response modification factor against number of floors for intermediate
bracing, interior bracing, terminal bracing and without bracing models
Table 5.1: Response modification factor for thirteen storeys with three bays models 136
Table 5.2: Response modification factor for thirteen storeys with four bays models 136
Table 5.3: Response modification factor for thirteen storeys with five bays models 136
No table of figures entries found.

List of Figures

Figure 2.1: Relationship showing components of response modification factor.	
Figure 2.2: Yield stress - Time period relationship.	. 11
Figure 2.3: Plastic Deformation Curve for SAP2000 plastic hinge relationship	. 27
Figure 2.4: Idealized structural ductile behavior of force deformation curves	. 28
Figure 2.5: Idealized structural semi ductile behavior of force deformation curves	. 29
Figure 2.6: Idealized structural brittle behavior of force deformation curves	. 29
Figure 2.7: Bilinear pushover curve idealization using Paulay and Priestley [59]	. 30
Figure 2.8: Bilinear pushover curve idealization using ATC-40 [52]	.31
Figure 2.9: Bilinear pushover curve idealization using FEMA 356 [49]	.32
Figure 2.10: Determination of the idealized elasto - perfectly plastic force -displacem	ent
relationship, EC8 [57].	.32
Figure 2.11a: Force-deformation generalization for concrete elements, FEMA 356 [4	19].
	.33
Figure 2.11b: Force-deformation generalization for concrete elements, FEMA 356 [4	1 9].
	. 33
Figure 3.1a: Plan and Elevations of 3 bays intermediate bracing models	. 35
Figure 3.1b: Plan and Elevations of 3 bays terminal bracing models.	. 36
Figure 3.1c: Plan and Elevations of 3 bays un-braced models	. 37
Figure 3.2a: Plan and Elevations of 4 bays intermediate bracing models	. 38
Figure 3.2b: Plan and Elevations of 4 bays terminal bracing models	. 39
Figure 3.2c: Plan and Elevations of 4 bays un-braced models	.40
Figure 3.3a: Plan and Elevations of 5 bays intermediate bracing models	.41
Figure 3.3b: Plan and Elevations of 5 bays interior bracing models	. 42
Figure 3.3c: Plan and Elevations of 5 bays terminal bracing models	. 43
Figure 3.3d: Plan and Elevations of 5 bays un-braced models	. 44
Figure 3.1: Design response spectrum type (1) in ECP-201 [1] for all Egyptian areas	. 47
Figure 3.2: Idealized stress strain curve for concrete, ECP-203 [2]	. 50
Figure 3.3: Idealized elasto plastic performance of the reinforcement steel, ECP-203	[2].
	.51
Figure 4.1a: Intermediate X-bracing.	. 53
Figure 4.1b: Terminal X-bracing	. 53
Figure 4.1c: Un-braced moment resisting frame.	. 53
Figure 4.1: Plastic hinges formation at failure for the 3-storeys frames.	. 53
Figure 4.2a: Pushover curve for the 3-storeys frame with intermediate X-bracing	. 54
Figure 4.2b: Pushover curve for the 3-storeys frame with terminal X-bracing	. 54
Figure 4.2c: Pushover curve for the 3-storeys un-braced frame	. 55
Figure 4.2: The results of pushover analysis for the 3-storeys frames	. 55
Figure 4.3a: Intermediate X-bracing.	. 56
Figure 4.3b: Terminal X-bracing	56

Figure 4.3c: Un-braced moment resisting frame.57Figure 4.4a: Pushover curve for the	he 5-
storeys frame with intermediate X-bracing.	57
Figure 4. 3: Plastic hinges formation at failure for the 5-storeys frames	57
Figure 4.4b: Pushover curve for the 5-storeys frame with terminal X-bracing	58
Figure 4.4c: Pushover curve for the 3-storeys un-braced frame	58
Figure 4.4: The results of pushover analysis for the 5-storeys frames	58
Figure 4.5a: Intermediate X-bracing.	59
Figure 4.5b: Terminal X-bracing	60
Figure 4.5c: Un-braced moment resisting frame.	60
Figure 4.5: Plastic hinges formation at failure for the 7-storeys frames	60
Figure 4.6a: Pushover curve for the 7-storeys frame with intermediate X-bracing	
Figure 4.6b: Pushover curve for the 7-storeys frame with terminal X-bracing	61
Figure 4.6c: Pushover curve for the 7-storeys un-braced frame	62
Figure 4.6: The results of pushover analysis for the 7-storeys frames	62
Figure 4.7a: Intermediate X-bracing.	63
Figure 4.7b: Terminal X-bracing	63
Figure 4.7c: Un-braced moment resisting frame.	64
Figure 4.7: Plastic hinges formation at failure for the 9-storeys frames	64
Figure 4.8a: Pushover curve for the 9-storeys frame with intermediate X-bracing	64
Figure 4.8b: Pushover curve for the 9-storeys frame with terminal X-bracing	65
Figure 4.8c: Pushover curve for the 9-storeys un-braced frame	65
Figure 4.8: The results of pushover analysis for the 9-storeys frames	65
Figure 4.9a: Intermediate X-bracing.	66
Figure 4.9b: Terminal X-bracing	67
Figure 4.9c: Un-braced moment resisting frame.	67
Figure 4.9: Plastic hinges formation at failure for the 11-storeys frames	67
Figure 4.10a: Pushover curve for the 11-storeys frame with intermediate X-bracing.	68
Figure 4.10b: Pushover curve for the 11-storeys frame with terminal X-bracing	68
Figure 4.10c: Pushover curve for the 11-storeys un-braced frame	69
Figure 4.10: The results of pushover analysis for the 11-storeys frames	69
Figure 4.11a: Intermediate X-bracing.	70
Figure 4.11b: Terminal X-bracing	70
Figure 4.11c: Un-braced moment resisting frame.	71
Figure 4.11: Plastic hinges formation at failure for the 13-storeys frames	71
Figure 4.12a: Pushover curve for the 13-storeys frame with intermediate X-bracing.	71
Figure 4.12b: Pushover curve for the 13-storeys frame with terminal X-bracing	72
Figure 4.12c: Pushover curve for the 13-storeys un-braced frame	72
Figure 4.12: The results of pushover analysis for the 13-storeys frames	72
Figure 4.13: Ductility reduction factors against number of floors for interme	diate
bracing, terminal bracing and un-braced models.	73
_Figure 4.14: Overstrength factors against number of floors for intermediate bra	
terminal bracing and un-braced models.	74

Figure 4.15: Response modification factor against number of floors for intermed	liate
bracing, terminal bracing and un-braced models.	75
Figure 4.16a: Intermediate X-bracing.	76
Figure 4.16b: Terminal X-bracing	77
Figure 4.16c: Un-braced moment resisting frame.	77
Figure 4.16: Plastic hinges formation at failure for the 3-storeys frames	77
Figure 4.17a: Pushover curve for the 3-storeys frame with intermediate X-bracing	77
Figure 4.17b: Pushover curve for the 3-storeys frame with terminal X-bracing	78
Figure 4.17c: Pushover curve for the 3-storeys un-braced frame	78
Figure 4.17: The results of pushover analysis for the 3-storeys frames	78
Figure 4.18a: Intermediate X-bracing.	79
Figure 4.18b: Terminal X-bracing	80
Figure 4.18c: Un-braced moment resisting frame.	80
Figure 4.18: Plastic hinges formation at failure for the 5-storeys frames	80
Figure 4.19a: Pushover curve for the 5-storeys frame with intermediate X-bracing	81
Figure 4.19b: Pushover curve for the 5-storeys frame with terminal X-bracing	81
Figure 4.19c: Pushover curve for the 3-storeys un-braced frame	82
Figure 4.19: The results of pushover analysis for the 5-storeys frames	82
Figure 4.20a: Intermediate X-bracing.	83
Figure 4.20b: Terminal X-bracing	83
Figure 4.20c: Un-braced moment resisting frame.	84
Figure 4.20: Plastic hinges formation at failure for the 7-storeys frames	84
Figure 4.21a: Pushover curve for the 7-storeys frame with intermediate X-bracing	84
Figure 4.21b: Pushover curve for the 7-storeys frame with terminal X-bracing	85
Figure 4.21c: Pushover curve for the 7-storeys un-braced frame	85
Figure 4.21: The results of pushover analysis for the 7-storeys frames	85
Figure 4.22a: Intermediate X-bracing.	86
Figure 4.22b: Terminal X-bracing.	87
Figure 4.22c: Un-braced moment resisting frame.	87
Figure 4.22: Plastic hinges formation at failure for the 9-storeys frames.	87
Figure 4.23a: Pushover curve for the 9-storeys frame with intermediate X-bracing	88
Figure 4.23b: Pushover curve for the 9-storeys frame with terminal X-bracing	88
Figure 4.23c: Pushover curve for the 9-storeys un-braced frame	89
Figure 4.23: The results of pushover analysis for the 9-storeys frames	89
Figure 4.24a: Intermediate X-bracing.	90
Figure 4.24b: Terminal X-bracing.	90
Figure 4.24c: Un-braced moment resisting frame.	91
Figure 4.24: Plastic hinges formation at failure for the 11-storeys frames	91
Figure 4.25a: Pushover curve for the 11-storeys frame with intermediate X-bracing	91
Figure 4.25b: Pushover curve for the 11-storeys frame with terminal X-bracing	92
Figure 4.25c: Pushover curve for the 11-storeys un-braced frame	92
Figure 4.25: The results of pushover analysis for the 11-storeys frames	92

Figure 4.26a: Intermediate X-bracing.	93
Figure 4.26b: Terminal X-bracing	94
Figure 4.26c: Un-braced moment resisting frame.	94
Figure 4.26: Plastic hinges formation at failure for the 13-storeys frames	
Figure 4.27a: Pushover curve for the 13-storeys frame with intermediate X-bracing.	95
Figure 4.27b: Pushover curve for the 13-storeys frame with terminal X-bracing	95
Figure 4.27c: Pushover curve for the 13-storeys un-braced frame	96
Figure 4.27: The results of pushover analysis for the 13-storeys frames	96
Figure 4.28: Ductility reduction factors against number of floors for intermediate	ediate
bracing, terminal bracing and un-braced models.	97
Figure 4.29: Overstrength factors against number of floors for intermediate broadening	acing,
terminal bracing and un-braced models.	98
Figure 4.30: Response modification factor against number of floors for interm	ediate
bracing, terminal bracing and un-braced models.	99
Figure 4.31a: Intermediate X-bracing.	100
Figure 4.31b: Interior X-bracing.	100
Figure 4.31c: Terminal X-bracing.	101
Figure 4.31d: Un-braced Moment resisting frame.	101
Figure 4.31: Plastic hinges formation at failure for the 3-storeys frames	101
Figure 4.32a: Pushover curve for the 3-storeys frame with intermediate X-bracing	101
Figure 4.32b: Pushover curve for the 3-storeys frame with interior X-bracing	102
Figure 4.32c: Pushover curve for the 3-storeys frame with terminal X-bracing	102
Figure 4.32d: Pushover curve for the 3-storeys un-braced frame.	103
Figure 4.32: The results of pushover analysis for the 3-storeys frames	103
Figure 4.33a: Intermediate X-bracing.	104
Figure 4.33b: Interior X-bracing.	104
Figure 4.33c: Terminal X-bracing.	104
Figure 4.33d: Un-braced Moment resisting frame.	105
Figure 4.33: Plastic hinges formation at failure for the 5-storeys frames	105
Figure 4.34a: Pushover curve for the 5-storeys frame with intermediate X-bracing	105
Figure 4.34b: Pushover curve for the 5-storeys frame with interior X-bracing	106
Figure 4.34c: Pushover curve for the 5-storeys frame with terminal X-bracing	106
Figure 4.34d: Pushover curve for the 5-storeys un-braced frame.	107
Figure 4.34: The results of pushover analysis for the 5-storeys frames	107
Figure 4.35a: Intermediate X-bracing.	108
Figure 4.35b: Interior X-bracing.	108
Figure 4.35c: Terminal X-bracing.	109
Figure 4.35d: Un-braced moment resisting frame.	109
Figure 4.35: Plastic hinges formation at failure for the 7-storeys frames	109
Figure 4.36a: Pushover curve for the 7-storeys frame with intermediate X-bracing	110
Figure 4.36b: Pushover curve for the 7-storeys frame with interior X-bracing	110
Figure 4.36c: Pushover curve for the 7-storeys frame with terminal X-bracing	111