

Study of inorganic lodine level in Patients with chronic kidney disease

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

Presented by

Wedad Adel Mahmoud Abdo

M.B., *B.Ch*

Supervised by

Prof. Mohamed Aly Ibrahim

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Mohamed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Essam Mohamed AbdelHafiz

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2017

دراسة مستوى اليود الغير عضوى في مرضى القصور المزمن بالكلي

رسالة

توطئة للحصول علي درجة الماجستير في أمراض الباطنة العامة مقدمة من

الطبيبة/ وداد عادل محمود عبده بكالوربوس الطب و الجراحة

تحت إشراف

أد/ محمد على إبراهيم

أستاذ أمراض الباطنة العامه والكلى كلية الطب- جامعة عين شمس

د/ محمد سعید حسن

مدرس أمراض الباطنة العامه والكلى كلية الطب- جامعة عين شمس

د/ عصام محمد عبد الحافظ

مدرس الأشعه التشخيصيه كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٧

سورة البقرة الآية: ٢١

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Mohamed Aly Ibrahim**, Professor of Internal Medicine and nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Dr. Mohamed Saeed Hassan,** lecturer of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Essam Mohamed Abdel-Hafiz,** Lecturer of radiodiagnosis, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them; this work could not have been completed.

Contents

Subjects P	age
• List of Abbreviations	I
• List of table	III
List of Figures	V
• Introduction	1
Aim of the Work	3
Review of literature: Chapter 1: Thyroid disorders in patients with chronic kidney disease	1
Chapter 2: Iodine, iodine metabolism and iodine disorders in patients of chronic kidney disease), /
Chapter 3: Drug induced thyroid disorders and iodine related drugs	
• Patients And Methods	63
• Results	67
• Discussion	85
• Summary	95
• Conclusion	99
• Recommendations	.100
References	.101
Arabic Summary	

List of Abbreviations

ACE-I : Angiotensin converting enzyme inhibitor

ACR : Albumin – creatinine ratio AER : Albumin excretion rate

AIT : Amiodarone induced thyrotoxicosis

AKI : Acute kidney injury
ATP : Adenosine triphosphate
CHD : Coronary heart disease
CHF : Congestive heart failure
CKD : Chronic kidney disease

CKD-EPI : Chronic Kidney Disease-Epidemiology

CRF : Chronic renal failure
 CVD : Cardiovascular disease
 CVE : Cerebrovascular event
 DIT : Diiodityrosine

ESRD : End stage renal disease ESS : Euthyroid sick syndrome Free T3 : Free triiodothyronine

Free T4 : Free thyroxine

GFR : Glomerular filtration rate

HD: Haemodialysis

I : Iodine

IDD : Iodine Deficiency Disorders

IFN: Interferon

IGF-1 : Insulin like growth factor-1

IL : Interleukin

LDH Lactate dehydrogenase Low density lipoprotein

MDRD : Modification of Diet in Renal Disease

MIT : Monoiodotyrosine

NIS : Sodium/ iodine symporter NS : Nephrotic syndrome

NSAIDs : Non steroidal anti inflammatory drugs

NTI : Non thyroidal illness PKC : Protein kinase C

PVN : Paraventricular nucleus
RAAS : Renin–angiotensin–aldosterone system

RBF : Renal blood flow

rT3 : reverse triiodothyronine SCD : Sudden cardiac death

SU : Sulfanylurea

&List of Abbreviations

TBG : Thyroxine-binding globulin

: Thyroid hormone TH

: Thyroid Hormone Replacement therapy **THRT**

: Thyrotropin releasing hormone TRH : Thyroid stimulating hormone **TSH UIC** : Urinary iodine concentration : Vascular adhesion molecule-1 VCAM-1 **VEGF**

: Vascular endothelial growth factor

∠List of Table

List of Table

Tab. No.	Subject	Page
Table(1)	Criteria of CKD.	5
Table(2)	CKD Stages based on GFR &albumiuria.	6
Table(3)	Effects of Iodine deficiency disorders.	40
Table(4)	Drugs influence thyroid function 1.	61
Table(5)	Drugs influence thyroid function 2.	62
Table(6)	Baseline characteristics of the study population (cases).	67
Table(7)	Medical history of the Cases.	68
Table(8)	Laboratory data of the Cases.	69
Table(9)	Comparison between the study and control groups as regard thyroid profile.	69
Table(10)	Comparison between cases and controls as regard ultrasound findings of thyroid.	70
Table(11)	Comparison between cases and controls as regard Iodine.	71
Table(12)	Comparison between cases and controls as regard interpretation of thyroid profile.	72
Table(13)	Correlation between iodine level and laboratory data in all patients.	72
Table(14)	Correlation between Iodine level, Free T4, TSH, and Free T3 in all patients.	73
Table(15)	Comparison between patients in the three CKD stages as regard laboratory data.	75
Table(16)	Comparison between the three CKD stages as regard Free T4, TSH and Free T3.	76
Table(17)	Comparison between CKD stages as regard Iodine.	77
Table(18)	Comparison between patients in the three CKD stages as regard interpretation of thyroid profile.	78
Table(19)	Comparison between the three CKD stages as regard thyroid ultrasound findings.	79
Table (20)	Correlation between Iodine, Age and laboratory data in Stage II Patients.	79
Table (21)	Correlation between Iodine, Age and laboratory data in Stage III Patients.	80
Table (22)	Correlation between Iodine, Age and laboratory data in Stage IV Patients.	81

∠List of Table

	Linear Regression analysis displaying	82
Table (23)	independent predictors of iodine level in all	
	cases.	
	Multiple Linear Regression displaying	83
Table (24)	independent predictors of serum iodine level in	
	Stage II patients.	
	Multiple Linear Regression displaying	83
Table (25)	independent predictors of serum iodine level in	
	Stage III patients.	
	Multiple Linear Regression displaying	84
Table (26)	independent predictors of serum iodine level in	
	Stage IV patients.	

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Effects of thyroid hormones on the kidney.	9
Fig. (2)	Multiple direct and indirect effects of thyroid	11
	hormone on GFR.	
E: (2)	Effects of hyperthyroidism and hypothyroidism	12
Fig. (3)	on renal physiology and function.	
Fig. (4)	Effects of chronic kidney disease on thyroid	14
Fig. (4)	profile.	
Fig. (5)	Effects of CKD on hypothalamus-pituitary-	15
	thyroid axis.	
Fig. (6)	Type and prevalence of thyroid dysfunction in	19
Fig. (6)	each CKD stage.	
Fig. (7)	Prevalence of prevalent hypothyroidism in CKD	21
Fig. (7)	patients.	
Fig. (8)	Prevalence of subclinical hypothyroidism in	21
Fig. (6)	CKD patients.	
Fig. (9)	Summary of the effects of CKD on thyroid.	24
Fig.(10)	Synthesis and release of thyroid hormones.	33
Fig.(11)	Causes of iodine deficiency disorders.	38
Fig. (12)	Renal elimation of drugs.	45
Fig (12)	Effects of Rexinoids on hypothalamic pituitary –	56
Fig. (13)	thyroid Axis.	
Fig.(14)	The gender distribution in cases group.	67
Fig.(15)	The virology of the study population.	68
Fig.(16)	Thyroid profile in cases and controls.	70
Fig.(17)	Mean Iodine levels in cases and controls.	71
Fig. (18)	Correlation between iodine and T3.	73
Fig.(19)	Correlation between iodine and T4.	74
Fig.(20)	Correlation between iodine and TSH.	74
	Comparison between the CKD stages as regard	76
Fig.(21)	thyroid hormones.	
Fig.(22)	Comparison between the CKD stages as regard	77
	Iodine level.	
E: ~ (22)	Interpretation of thyroid profile in the CKD	78
Fig. (23)	stages.	

Abstract

In our study, we aimed to assess the level of inorganic iodine in patients with chronic kidney disease and to correlate the findings with thyroid function tests and thyroid ultrasound.

Our study was conducted on 60 randomly selected patients with chronic kidney disease from Ain Shams University Hospitals, and control group formed of 30 randomly selected healthy volunteers similar in age and sex with the patients group.

Patients group included 39 male patients and 21 female patients. Age of CKD patients ranged from 18-50 years.

We excluded patients with history of thyroid disease, history of frequent de-compensated medical conditions (exacerbations of congestive heart failure or obstructive lung disease, cancer patients), diabetics and patients with history of recent admission in ICU and patients receiving medications including iodine or affecting thyroid function.

Keyword: Chronic Kidney Disease, Thyroid, Iodine

Introduction

Renal disease leads to significant changes in thyroid functions and vice versa. In one hand, thyroid hormones (TH) are necessary for growth and development of the kidney and for the maintenance of water and electrolyte homeostasis. On the other hand, kidney is involved in the metabolism and elimination of TH (*Rajagopalan et al.*, 2013).

Thyroid dysfunction such as hypothyroidism and hyperthyroidism affects RBF, GFR, tubular function, electrolyte homeostasis and kidney structure. Studies have observed the high incidence of thyroid dysfunction in patients with kidney disease such as acute kidney injury AKI, CKD with or without dialysis and kidney transplantation (*Mohamedali et al.*, 2014).

The incidence of thyroid dysfunction in CKD patients is greater than that found among the general population. In CKD, thyroid hormone metabolism is impaired. Predialysis CKD patients have an increased risk of hypothyroidism (*Rajeev et al.*, 2015).

Acute kidney injury and CKD are accompanied by notable effects on the hypothalamus-pituitary-thyroid axis as the secretion of pituitary thyrotropin (TSH) is impaired in uremia (*Rajagopalan et al.*, 2013).

The kidney also plays a role in clearance of iodine, TSH and thyrotropin-releasing hormone. However, most patients with CKD are euthyroid with normal TSH and free T4 levels (*Rhee et al.*, 2014).

The kidney contributes to the iodine clearance primarily by glomerular filtration. Serum iodine concentrations are elevated in patients with chronic kidney disease (CKD) but not correlated with the degree of kidney failure. The excess of serum iodine has been linked to increased prevalence of goiter and hypothyroidism in patients with CKD (*Mariani&Berns*, 2012).

Previous studies have shown that CKD patients have low triiodothyronine (T3), normal or reduced thyroxine (T4) levels and consequently elevated thyroid-stimulating hormone (TSH) (*Miulescu et al.*, 2014).

The reduction in T3 levels (low T3 syndrome) is the most frequently observed thyroid alteration in these patients. This reduction in T3 concentrations has been linked to a decrease in the peripheral synthesis of T3 from T4 (*Miulescu et al.*, 2014).

Aim of the work

To assess the level of inorganic iodine in patients with chronic kidney disease in different stages and to correlate the findings with thyroid function tests and thyroid ultrasound.

Thyroid disorders in patients with chronic Kidney disease

CKD is defined as abnormalities of kidney structure or function, present for more than 3 months, with implications for health and is classified based on the cause of the disease, the estimated glomerular filtration rate (eGFR) class and albuminuria (*KDIGO*, 2005).

Chronic kidney disease (CKD) is a global health burden with a high economic cost to health systems and is an independent risk factor for cardiovascular disease (CVD). All stages of CKD are associated with increased risks of cardiovascular morbidity, premature mortality and/or decreased quality of life (*Hill et al.*, 2016).

The prevalence of CKD exceeds 10% and is more than 50% in high-risk subpopulations (*Eckardt et al.*, 2013).

Chronic kidney disease was ranked 27th in the list of causes of total number of global deaths in 1990, but rose to 18th in 2010 (*Jha et al.*, *2013*).