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English summary 

 
          The uses of the binomial and multinomial distributions in statistical modelling and 

analyzing discrete data are very well understood, with a huge variety of applications and 

appropriate software, but there are plenty of real-life examples where these simple models 

are inadequate. Therefore, it seems wise to consider flexible alternative models to take into 

account the overdispersion or underdispersion (Hinde & Demetrio (1998)). Thus, the binomial 

and Poisson distributions have been generalized in several ways to handle the problem of 

dispersion inherent in the analysis of discrete data that may arise with the presence of 

aggregation of the individuals. The binomial distribution has been generalized in various ways. 

Rudolfer (1990), Madsen (1993) and Luceno & Ceballos (1995) have summarized most of these 

generalizations. Among these extensions, there are the generalized binomial distribution 

introduced by Edwards (1960) and the multiplicative and the additive generalized binomial 

distributions which were derived by Altham (1978). 

 

          As finite Markovian models are extensively used in varies application fields, the 

generalized Markov-binomial model (Markov- Bernoulli model MBM, also called Markov 

modulated Bernoulli process ( Ozekici(1997))) introduced by Edwards (1960) have been 

studied by  many researchers from the various aspects of probability, statistics and their 

applications, in particular the classical problems related to the usual Bernoulli model (Anis & 

Gharib (1982), Arvidsson & Francke (2007), Cmey et al (2008) , Cekanavicius & Vellaisamy 

(2010) , Gharib & Yehia(1987), Inal(1987), Maillart et al.(2008), Minkova & Omey (2011), 

Ozekici (1997), Ozekici  et al (2003),Pacheco et al. (2009), Yehia & Gharib(1993) and others.). 

Further, due to the fact that the MBM operates in a random environment depicted by a 

Markov chain so that the probability of success at each trial depends on the state of the 

environment, this model represents an interesting application of stochastic processes, and 



 
 

thus used by numerous authors in stochastic modelling (see for example, Switzer (1967, 1971), 

Pedler (1980), Xekalaki & Panaretos (2004), Arvidsson, & Francke (2007), Pires & Diniz (2012)). 

 

          The present thesis is devoted to study the probability distributions related to the 

Markov- Bernoulli sequence of random variables (the MBM) from some aspects such as 

distributional properties, characterizations, limit theorems, generalizations, and throw the 

light on some applications. 

 

           The thesis consists of five chapters and an introduction. The introduction is devoted to 

show the actuality of the subject of study and to give a historical survey about it.  Chapter one 

is devoted to give the basic definitions, properties and preliminary results concerning the 

Markov- Bernoulli sequence of random variables (MBM). Chapter one, also, throw light on 

some generalizations of MBM and some examples of its applications.   

 

          Chapter two is concerned with the Markov binomial and Markov negative binomial 

distributions, exploring their properties, characteristic functions and relations to other 

distributions. This chapter contains, also, a numerical study to specify the descriptive 

characteristics of the Markov binomial distribution, besides a detailed investigation for the 

generalized Markov-binomial distribution introduced by Xekalaki & Panaretos (2004).  

 

          Chapter three is devoted to investigate the properties of the Markov-Bernoulli 

geometric (MBG) distribution through characterizing it. It is worth mentioning that the results 

of both sections 3.2 and 3.3 are totally new and is published respectively, in Journal of 

Mathematics and Statistics (Vol. 10, No. 2, 186-191, 2014), and in International Journal of 

Statistics and Probability (Vol. 3, No. 3, 138-146, 2014). 

 

         Chapter four is devoted to investigating the limiting behavior of the sum of n- Markov-

Bernoulli random variables. In section 4.1 a new prove is given for the central limit theorem 

using generating functions technique. In section 4.2 we discuss in details the results of Gharib 

et al. (1987) concerning uniform estimates of the rate of convergence in the central limit 



 
 

theorem. Section 4.3 is devoted to discussing the results of Gharib et al. (1991) concerning 

limit theorem in the space 𝐿𝜋,  (1 ≤ 𝜋 ≤ ∞). 

  

            In chapter five, a new method is introduced for adding two parameters to an existing 

distribution. This new technique extends the methods of Edwards (1960) and Marshall and 

Olkin (1997) for adding a parameter to a family of distributions. The method is of direct 

relevance to the Markov-Bernoulli geometric distribution and is applied in particular, to a one 

parameter Burr XII distribution to yield a three parameter extended Burr XII distribution which 

may serve as a competitor to such commonly used three parameters families of distributions. 

The results of this chapter are totally new and are submitted for publication in an international 

specialized journal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

INTRODUCTION 
 

                 The uses of the binomial and multinomial distributions in statistical modelling and 

analyzing discrete data are very well understood, with a huge variety of applications and 

appropriate software, but there are plenty of real-life examples where these simple models 

are inadequate. Therefore, it seems wise to consider flexible alternative models to take into 

account the overdispersion or underdispersion (Hinde & Demetrio (1998)). Thus, the binomial 

and Poisson distributions have been generalized in several ways to handle the problem of 

dispersion inherent in the analysis of discrete data that may arise with the presence of 

aggregation of the individuals. For instance: 

 

(i) in plant selection study the association among two plants arises when competing 

     about the quantity of nutrients; 

(ii) in biological study (Yakovlev & Tsodikov (1996) and Borges et al. (2012)), it  

      is usually assumed that cells in a tissue are independent. However, the 

      biological independence assumption may not be true when the dynamics of the  

      cell population of a normal tissue is considered. It is therefore desirable to 

      construct new models with strong biological interpretation of the dependence 

       incorporated in the carcinogenesis process.  

 

          The binomial distribution has been generalized in various ways. Rudolfer (1990), Madsen 

(1993) and Luceno & Ceballos (1995) have summarized most of these generalizations. Among 

these extensions, there are the generalized binomial distribution introduced by Edwards 

(1960) and the multiplicative and the additive generalized binomial distributions which were 

derived by Altham (1978). The probability mass function (pmf) of the multiplicative binomial 

distribution is a multiplication of its pmf by a factor. It makes the variance greater or less than 

the corresponding binomial variance depending on the values of the factor. On the other 

hand, the additive binomial distribution is a mixture of three conventional binomial models. 



 
 

Altham (1978) developed the correlated Binomial model by correcting the Binomial model via 

the method suggested by Bahadur (1961) to encompass dependent Bernoulli variables. A 

three-parameter binomial distribution was derived by Paul (1985, 1987), which is a 

generalization of the Binomial, beta-binomial and the correlated binomial distribution 

proposed by Kupper & Haseman (1978). Ng (1989) developed the modified binomial 

distributions. In this approach, the binomial distribution is changed and the resulting 

distribution becomes more spread out (indicating positive correlation among the Bernoulli 

variables), or more peaked (indicating negative correlation among the Bernoulli variables) 

than the binomial distribution. A four-parameter binomial distribution was derived by Fu & 

Sproule (1995). This new distribution assumes values between  and  for  < , rather than 

the usual values 0 or 1. Lindsey (1995) and Luceno & Ceballos (1995) proposed a generalized 

binomial distribution which is discussed in details in Diniz et al. (2010). Chang & Zelterman 

(2002) generalizes the binomial distribution by considering Bernoulli variables with probability 

of success depending on the previous one. Tsai et al. (2003) presented a model that studies 

the overall error rate when testing multiple hypotheses. This model involves the distribution 

of the sum of dependent Bernoulli trials, and it is approximated thorough a beta-binomial 

structure. Instead of using the beta-binomial model, Gupta & Tao (2010) derived the exact 

distribution of the sum of dependent Bernoulli variables and not identically distributed. 

Minkova & Omey (2011) defined a new binomial distribution related to the interrupted 

Markov chain. Another extension of the binomial distribution is the COM-Poisson-binomial 

distribution (CMPB) introduced in Shmueli et al. (2005). The CMPB distribution arises as the 

conditional distribution of a COM-Poisson variable (Conway & Maxwell, 1962) given a sum of 

two COM-Poisson variables with the same dispersion parameter. It generalizes the binomial 

distribution and can be interpreted as the sum of dependent Bernoulli variables with a specific 

joint distribution (Altham et.al. 2014). 

As finite Markovian models are extensively used in varies application fields, the generalized 

Markov-binomial model (Markov- Bernoulli model MBM, also called Markov modulated 

Bernoulli process ( Ozekici(1997))) introduced by Edwards (1960) have been studied by  many 

researchers from the various aspects of probability, statistics and their applications, in 

particular the classical problems related to the usual Bernoulli model (Anis & Gharib (1982), 

Arvidsson & Francke (2007), Cmey et al (2008) , Cekanavicius & Vellaisamy (2010) , Gharib & 

Yehia(1987), Inal(1987), Maillart et al.(2008), Minkova & Omey (2011), Ozekici (1997), Ozekici  

et al (2003),Pacheco et al. (2009), Yehia & Gharib(1993) and others.). Further, due to the fact 

that the MBM operates in a random environment depicted by a Markov chain so that the 



 
 

probability of success at each trial depends on the state of the environment, this model 

represents an interesting application of stochastic processes, and thus used by numerous 

authors in stochastic modelling (see for example, Switzer (1967, 1971), Pedler (1980), Xekalaki 

& Panaretos (2004), Arvidsson, & Francke (2007), Pires & Diniz (2012)). Moreover, from the 

point of view of constructing new counting distributions, the MBM introduced by 

Edwards(1960), represents, in fact, a new way of obtaining new counting distributions related 

to some Markov chain by assuming some dependency in the sequence of Bernoulli random 

variables that gives an additional parameter by which the Bernoulli model could be a more 

realistic model in practice. 

 

          The present thesis is devoted to study the probability distributions related to the 

Markov- Bernoulli sequence of random variables (the MBM) from some aspects such as 

distributional properties, characterizations, limit theorems, generalizations, and throw the 

light on some applications. 

 

           The thesis consists of five chapters and an introduction. The introduction is devoted to 

show the actuality of the subject of study and to give a historical survey about it.   

 

            Chapter one is devoted to give the basic definitions, properties and preliminary results 

concerning the Markov- Bernoulli sequence of random variables (MBM). Chapter one, also, 

throw light on some generalizations of MBM and some examples of its applications.  

 

            Chapter two is concerned with the Markov binomial and Markov negative binomial 

distributions, exploring their properties, characteristic functions and relations to other 

distributions. This chapter contains, also, a numerical study to specify the descriptive 

characteristics of the Markov binomial distribution.  

 

            Chapter three is devoted to investigate the properties of the Markov-Bernoulli 

geometric (MBG) distribution through characterizing it. Section 3.1 investigates the results of 

Yehia and Gharib (1993) concerning the properties of the MBG distribution analogous to those 



 
 

of the usual geometric distribution such as the lack of memory property and conditional 

moments. Section 3.2 is devoted to properties that characterize the MBG distribution using 

its relation to random sums. Section 3.2 is devoted to investigating some characterization 

results of the MBG distribution related to random sums under some moment conditions. It is 

worth mentioning that the results of both sections 3.2 and 3.3 are totally new and are 

published respectively, in Journal of Mathematics and Statistics (Vol. 10, No. 2, 186-191, 2014) 

and in International Journal of Statistics and Probability (Vol. 3, No. 3, 138-146, 2014). 

 

            Chapter four is devoted to investigating the limiting behavior of the sum of n- Markov-

Bernoulli random variables. In section 4.1 we give a new prove for the central limit theorem 

using generating function. In section 4.2 we discuss in details the results of Gharib et al. (1987) 

concerning uniform estimates of the rate of convergence in the central limit theorem. Section 

4.3 is devoted to discussing the results of Gharib et al. (1991) concerning limit theorem in the 

space 𝐿𝜋,  (1 ≤ 𝜋 ≤ ∞).  

 

            In chapter five, a new method is introduced for adding two parameters to an existing 

distribution that extends the methods of Edwards (1960) and Marshall and Olkin (1997) for 

adding a parameter to a family of distributions. The method is of direct relevance to the 

Markov-Bernoulli geometric distribution and is applied in particular, to the one parameter 

Burr XII distribution to yield a three parameter extended Burr XII distribution which may serve 

as a competitor to such commonly used three parameters families of distributions. The results 

of this chapter are totally new and are submitted for publication in an international specialized 

journal. 
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Chapter 1 

Basic Definitions, Properties and 

  Preliminary Results   
 

 Introduction 

        This chapter is devoted to introduce the basic definitions, properties and 

preliminary results concerning the Markov- Bernoulli sequence of random variables 

(Markov- Bernoulli model MBM). Some generalizations and application examples 

are, also, introduced. The basic references of the chapter contents are Anis & Gharib 

(1982), Edwards (1960), Wang (1981), Xekalaki and Panaretos (2004), Switzer 

(1967), and Ng et al. (1999).  

1.1 The Markov-Bernoulli Sequence (The Markov-Bernoulli 

       Model)        

          Edwards (1960) proposed the Markov-Bernoulli sequence of random variables 

as a generalization of the independent Bernoulli sequence of random variables by 

introducing a correlation between trials. In other words, let 𝑋1, 𝑋2, … be a sequence of 

Bernoulli random variables, each with possibly varying probabilities of success. 

Edwards formulated the problem as a Markov process with the following matrix of 

transition probabilities from one trial to the next: 

𝑋𝑖+1                                                     

0                   1                                        

                     𝑋𝑖 
0
1
 [
1 − (1 − )𝑝 (1 − )𝑝
(1 − )(1 − 𝑝) + (1 − )𝑝

] = [
𝑝00 𝑝01
𝑝10 𝑝11

]                         (1.1.1) 

The initial probabilities are 𝑃(𝑋1 = 1) = 𝑝 = 1 − 𝑃(𝑋1 = 0) = 1 − 𝑞, where 

𝑝 [0, 1] and  [0, 1]. If  = 0, we have the usual independent Bernoulli sequence. 

The resulting model (1.1) is called the Markov-Bernoulli model (MBM) or the 

Markov modulated Bernoulli process Ozekici (1997).  

If  = 1, the Markov process remains in its initial state for ever with probability 1.  


