CORD BLOOD STEM CELLS: ROLE IN PEDIATRIC TUMORS AND POSSIBLE METHODS OF EX VIVO EXPANSION

A Thesis

Submitted for the Partial Fulfillment of MD Degree in Clinical Oncology

By

DALIA ABD ELAZIZ MOHAMED SOLIMAN M.B., B.Ch., M.Sc.

UNDER THE SUPERVISION OF

Prof. Dr. MAHMOUD MAHFOUZ

Professor of Clinical Oncology Department Faculty of Medicine, Cairo University & Former Minister of Health, Egypt.

Prof. Dr. HAMDY MOHAMED ZAWAM

Professor of Clinical Oncology Department Faculty of Medicine, Cairo University

FACULTY OF MEDICINE, CAIRO UNIVERSITY 2008

ABSTRACT

Introduction: Expanding stem cell precursors using different culture media and supporting endothelial cells has been shown in previous studies to result in grafts that are capable of hematopoiesis in myeloablated host. The use of xenogenic endothelium or cell lines is not applicable to humans without concern. **Patients and methods:** We investigated the feasibility of ex vivo expansion of cord blood stem cells by co-culturing with autologus HUVEC or placenta in the presence of 3 or 5 growth factor cytokine cocktails. We compared the fold increase in expansion to the control arm of the study; the cord stem cells in liquid cultures with added cytokine cocktail. HPC, CD34+ cells, placenta and HUVEC were all isolated from the same umbilical cord. **Results:** Total cells, CD34 and CFU were significantly increased when cultured with the HUVEC or placenta compared to the liquid cultures. In the liquid cultures, five growth factor cytokine cocktails lead to an expansion that was significantly more than that observed using three cytokines only but less than the co culture arms. Conclusion: The use of autologus derived HUVEC or placenta provides an exciting and potentially clinically applicable approach to expand the umbilical cord stem cells for multiple uses in both the pediatric and adult patient, superior to the cytokine supplemented liquid cultures.

Key Words: CD34; cord blood; hematopoietic stem cells; placental co cultures; HUVEC; ex vivo expansion

ACKNOWLEDGMENT

My deepest gratitude is extended to my mentors, family and colleagues for their support of my research. I am greatly indebted to the late *Dr. Mahmoud Mahfouz*, Professor of Clinical Oncology Cairo University, may he rest in Peace. His support and belief in me and my research endeavors have been commendable. Although his loss has left me gloomed, it gave me an incentive to honor his memory with a final piece of work, which without his help would not have existed. I am very appreciative nevertheless to *Dr. Hamdy Zawam*, Professor of Clinical Oncology Cairo University, for his continued guidance not only through his supervisor ship of the M.D. thesis, precious advice and continuous encouragement, but also as a life mentor from day one of my training at NEMROCK. My laboratory mentors in the USA; Dr. Vicki Slone Children's Hospital of Orange County, **Dr. Leonard Sender** Professor of Pediatrics and Oncology Children's Hospital of Orange County for their help with writing the initial protocol and putting the initial building blocks together. Dr. Nabeel Yaseen, Professor of Hematopathology at Northwestern University in Chicago, Illinois for the exquisite opportunity to work at your laboratory and essential laboratory skills training.

I recognize the assistance of all the Professors in the department of Clinical Oncology at the University of Cairo, without their aid, I would not have reached my goals today.

To name few of my wonderful mentors NEMORCK; Dr. Kamal El Ghamrawy, Professor Clinical Oncology and Ex-Section Cheif of the department, his aid guided my initial efforts and assisted in materializing the initial protocol, Professor Dr. Wafaa Elmetenawy whose vision into the cell biology and future of Oncology and stem cells has helped facilitate a lot of hurdles along the way, and last but not least of my mentors Professor Dr. Yaseer Abdelkader, who I had the honor to work with during the Masters Degree research and enjoyed his initial assistance and aid in my accomplishments. I realize that I have tested people's patience but I am also elated by the support of everyone who recognized the levels of hardship I had to go through as a foreign researcher overseas. The lack of funding resource is unfortunately a world wide epidemic and a phenomenon. Professor Dr. Omar Zaki, Professor Dr. Ehasan ElGhoneimy and Professor Dr. Hosna, your aid and backing leaves me speechless, nevertheless deeply grateful to all of you.

My colleagues at NEMROCK have been nothing but wonderful during the last few years. My family; mom **Professor Dr.Awatef Draz** Section Chief of the Oral Pathology Department, dad; **Dr. Abdelaziz Soliman**

Professor of neonatolgy and previous section Chief of Pediatrics and Haitham, budding neonatologist and my only brother, all three of you set a great role model for me to follow and leaves me thankful to having you all as my family. My two children, Noor and Farrah, my extremely serene husband Sameh, who has bared a lot of insanities along the way thank you all for your patience, support and belief.

Finally, the mothers who donated their placenta, cord blood and passion to the advancement of Science and the alleviation of patients who need a novel expanded source of stem cells, thank you immensely.

CONTENTS

	Page
Introduction and Aim of the Work	1
Review of Literature	6
Patients and Methods	72
Results	84
Discussion	101
Summary	111
References	113
Arabic Summary	

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
Table (1)	Disease treated by umbilical cord blood transplantation	8
Table (2)	Comparison of the main features of UCBT and BMT	17-19
Table (3)	Studies comparing single unit Unrelated UCB transplantation and matched BMT in adults	24-27
Table (4)	List of novel strategies incorporating umbilical cord blood in cellular therapy	30-31
Table (5)	Total cell co-cultured with HUVEC vs Liquid cultures	92
Table (6)	Total cell co-cultured with placenta vs Liquid cultures	92
Table (7)	CD34+expansion co-cultured with HUVEC vs Liquid cultures	92
Table (8)	CD34+expansion co-cultured with Placenta vs Liquid cultures	93
Table (9)	Clonogenic assays CFU co-cultured with HUVEC vs Liquid cultures	93
Table (10)	Clonogenic assays CFU co-cultured with placenta vs Liquid cultures	93
Table (11)	D10 TNC expansion co-cultured with HUVEC vs Liquid cultures	94
Table (12)	D10 TNC expansion co-cultured with placenta vs Liquid cultures	94

Table (13)	D10 CD34 expansion co-cultured with HUVEC vs	95
	Liquid cultures	
5.11 (1.1)	710 9704	
Table (14)	D10 CD34 expansion co-cultured with placenta vs	95
	Liquid cultures	
Table (15)	Master table for flow cytometry results	96
Table (16)	Master table for Colony assay results	96
Table (17)	Master table for D10 expansion results	97
, , ,		

LIST OF ABBREVIATIONS

aGVHD	Acute Graft Versus Host Disease
ALL	Acute Lymphoblastic leukemia
AML	Acute Myeloid leukemia
BMT	Bone Marrow Transplant
СВ	Cord Blood
CBB	Cord Blood Bank
cGVHD	Chronic Graft Versus Host Disease
CI	Cumulative Incidence
CR	Complete remission
CMl	Chronic Myeloid Leukemia
DMSO	Dimethyl sulphoxide
EBMT	European Bone Marrow Transplant
FL	FLT-3 Ligand
G-CSF	Granulocyte Colony Stimulating factor
GM-CSF	Granulocyte-MacrophageColony Stimulating factor
GVHD	Graft versus Host Disease
GVL	Graft Versus leukemia
HLA	Human leukocyte antigen
HPC	Hematopoeitic progenitor cells
HSCT	Hematopoeitic Stem Cell Transplant
HUCBC	Human Umbilical Cord Blood Cells
IBMTR	International Bone Marrow Transplant Registry

IL-1	Interleukin-1
IL-3	Interleukin-3
IL-6	Interleukin-6
JCML	Juvenille Chronic Myeloid Leukemia
LFS	Leukemia free survival
LTC-IC	Long term culture initiating cells
LTRC	Long Term Repopulating Cells
MGDF	Megakaryocyte growth and differentiation factor.
MNC	Mononuclear cells
MSC	Mesenchymal Stem cells
NK-cells	Natural Killer cells
NMA	Non-myeloablative
NOD	Non obese diabetic
PBSC	Peripheral Blood Stem Cell
PTEN	Phosphatase and tensin homolog
SCF	Stem Cell Factor
SCID	Severe Combined Immunodeficiency
Th-1	T-helper cells 1
TNC	Total Nucleated Cells
TPO	Thrombopoeitin
TRM	Transplant Related Mortality
UCBT	Umbilical Cord Blood Transplant
URD	Unrelated Donor
CFU-E	Colony forming unit- erythroid
BFU-E	Burst forming unit-erythroid

CFU-GM	Colony forming unit-granulocyte, macrophage
CFU-	Colony forming unit-granulocyte, erythroid,
GEMM	macrophage, megakaryocyte

LIST OF FIGURES

Figure	<u>Title</u>	Page
Figure 1	Procedure diagram	82
Figure 2	Procedure diagram	83
Figure 3	BFU day #10 liquid cultures with 3 growth factors.	94
Figure 4	BFU day #10 liquid cultures, 5 growth factors same number of cells as in figure 2.	94
Figure 5	BFU day # 10 colony assays HUVEC co cultures with 3 growth factors.	95
Figure 6	BFU day # 10 colony assay HUVEC co cultured with 5 growth factors.	95
Figure 7	BFU day # 10 placental co culture with 3 growth factors.	96
Figure 8	BFU day # 10 placental co culture with 5 growth factors.	96

INTRODUCTION

AND

AIM OF THE WORK

Umbilical cord blood is a promising source hematopoiteic stem cells (HSC) for allogenic transplantation. An increasing number of patients are alive today because they were fortunate enough to be beneficiaries of this relatively new clinical treatment; cord blood transplantation. Knudtzon, 1974 was the first to demonstrate the presence of hematopoietic progenitor cells in umbilical cord blood (UCB). It was not until later in October 1988, when a child with Fanconi anemia was the recipient of an HLA-matched cord blood transplant from his newborn sister. The recipient is alive, well, and cured of the hematological manifestation of Fanconi anemia; and is thus the longest survivor of cord blood transplantation (Gluckman et al., 1989).

Since that first transplant, cord blood stem cell transplants have been successfully performed on patients, mostly children with acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), juvenile chronic myelogenous leukemia (JCML), chronic myelogenous leukemia (CML), neuroblastoma,

non-Hodgkin's lymphoma, severe aplastic anemia, gaucher's disease, Hunter syndrome, Hurler syndrome, thalassemia, Wiskott-Aldrich syndrome, and x-linked lymphoproliferative

Hurler syndrome is form of Briefly, a severe Mucopolysaccaridoses (MPS) type I, while Hunter syndrome is type II MPS. While Wiskott-Aldrich syndrome is an x-linked characterized congenital disorder by thrombocytopenia, infections, malignancy among other manifestations, for which the only curative treatment is bone marrow transplantation.

In 1992, in an attempt to more quickly discern the true risks and benefits of this novel stem cell source, the international cord blood registry was established as a repository of clinical data on the outcomes observed in patients who received umbilical cord blood.

In 1995, *Eurocord* was developed, serving as both a registry and a forum for the development of cooperative group studies within the European community.

The objectives of the USA International Cord Blood Institute and Eurocord, is to determine the rate of durable engraftment, acute and chronic GVHD, relapse, and survival after the transplantations in patients with malignant, and non-malignant disorders.