

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Efficient Security Protocols For Next Generation Wireless Networks

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering
(Electronics Engineering and Electrical Communications)

by

Mohamed Abdel Aziz El-Bashary

Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications)
Military Technical College, 2001

Supervised By Prof. Dr. Adel El-Hennawy Prof. Dr. Wagdi Anis Dr. Ahmed Abdel Hafez

Cairo - (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications

Efficient Security Protocols For Next Generation Wireless Networks

by

Mohamed Abdel Aziz El-Bashary

Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Military Technical College, 2001

Examiners' Committee

Name and Affiliation	Signature
Prof.	
Choose an item., University	
Prof.	
Choose an item., University	
Dr.	
Choose an item., University	

Date: 30 July 2016

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohamed Abdel Aziz El-Bashary
Signature

Date: 30 July 2016

Researcher Data

Name: Mohamed Abdel Aziz El-Bashary

Date of birth: 25/06/1968

Place of birth: Cairo

Last academic degree: Master of Science in Electrical Engineering

Field of specialization: Communications

University issued the degree: Military Technical College

Date of issued degree: 2001

Current job: Officer Engineer in the Armed Forces

Thesis Summary

A Mobile Ad hoc Network (MANET) is a self organized and self configuring network composed of mobile nodes that are connected wirelessly. MANET has very particular features such as high mobility, multi-hop routing and the absence of any fix infrastructure. The wireless nodes operate as communication endpoints as well as routers, enabling multi-hop wireless communication. Many practical applications are being developed for the use of mobile ad hoc networks in both military and civilian environments.

MANETs pose unique challenges, including limited power resources, low computation capabilities, limited storage capacity, less communication bandwidth, and more vulnerable to security attacks. The above mentioned constraints make security a challenge in MANETs.

Key management is a basic part of any secure communication that provides confidentiality, integrity and availability of the network. It supports the generation, distribution, storing, protection, and maintenance of keying material between authorized parties. Key management schemes should achieve robustness, key freshness, forward and backward secrecy, scalability, availability and efficiency. Key management protocols are classified into symmetric, asymmetric, group, and hybrid. Group key management is a point of interest for researchers with the growing usage of mobile devices and the rising of multicast communication.

In this research, first, a survey among the well known key management schemes in MANETs will be conducted to evaluate the security strength. Second, a new group key management scheme for MANETs will be proposed. The proposed key management scheme resolves the security holes in the studied schemes, and it is suitable to be deployed in the limited resources MANETs as well. Finally, the performance of the proposed novel scheme will be studied and analyzed in terms of security strength, memory storage, communication overhead, power consumption, simplicity, and scalability.

Key words: MANET, Group key management, security, multicast, Scyther.

Acknowledgment

First of all thanks to ALLAH Who helps me to accomplish this work.

I would like to express my sincere gratitude to my advisors Prof. Dr. Wagdy Anis, and Dr. Ahmed Abdel Hafez for the continuous support of my PhD study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

I place on record, my sincere thank to the soul of Prof. Dr. Adel El-Hennawy, for his valuable guidance and encouragement, who passed away before completion of this work.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Dr. Salwa El-Ramly and Prof. Dr. A. Hameed Gaafar for their insightful comments and encouragement.

My sincere thanks also go to Dr. Mohamed Mahmoud, Dr. Hesham Dahshan, Eng. Ahmed Hasan and Dr. Haitham Dawood, who provided me all their support and experience. Without their precious support it would not be possible to conduct this research.

I must express my very profound gratitude and appreciation to my mother, to my wife and to my beloved daughters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Finally, I would like to express, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this venture.

This Thesis is dedicated to the Spirit of My Father, Abdel Aziz El-Bashary.

July 2016

Table of Contents

List of	Figures			i
List of Tables				ii
List of Abbreviations				iv
List of Symbols				V
CHAPTER 1: INTRODUCTION				1
1.1.	General Overview			
	Motivation and Goals of the Study			
		oution of the Work		2
1.4.	Organi	zation of the Thesis		5
		MOBILE AD HOC NETWORKS (MANETS)		7
2.1.	Overvio	ew of Wireless Ad hoc Networks		7
2.2.		aracteristics of Wireless Networks		8
2.3.	Mobile	Ad-Hoc Network Applications		10
2.4.		T Architecture		10
	2.4.1.			11
		Networking		12
	2.4.3.			12
2.5.		g Protocol		12
	2.5.1.	Proactive Protocols		13
	2.5.2.	Reactive Protocols		15
		Hybrid Protocols		17
2.6.	Performance			17
2.7.		abilities of Routing Protocols		18
2.8.	Attacks in Ad Hoc Networks			19
		Passive attacks		20
	2.8.2.	Active attacks		20
2.9.		y Mechanisms		24
2.10		onfiguration		27
		Conflict Detection Protocols		28
	2.10.2	Protocols Avoiding Conflicts		29
		Auto-Configuration and Security		29
CHAP		KEY MANAGEMENT IN AD HOC		3
NETW				
3.1.	Introdu	ection		31
		teristics of Key Management Schemes		33
	3.2.1.	Confidentiality		34
	3.2.2.	Key Authentication		34
	3.2.3.	Key Confirmation		34
	3.2.4.	Key Freshness		34
	3.2.5.	Resistant to Known Key Attacks		35
	2.2.0.	(KKA)		

	3.2.6.	Forward Secrecy		35
	3.2.7.	Backward Secrecy		35
	3.2.8.	Key Independence		35
	3.2.9.	Availability		35
	3.2.10.	——————————————————————————————————————		35
	3.2.11.	Robustness		36
	3.2.12.	Efficiency		36
	3.2.13.	Scalability		36
3.3.	Trust M	•		36
	3.3.1.	Centralized Trust Model		36
	3.3.2.	Web-of-Trust Model		40
	3.3.3.			41
	3.3.4.	Hybrid Trust Model		41
3.4.		anagement Schemes in MANETs		41
3.5.		netric Key Management Schemes		42
	3.5.1.	Secure Routing Protocol		42
	3.5.2.			44
	3.3.2.	Control		
	3.5.3.			45
	3.5.4.	•		45
	3.5.5.			47
	3.3.3.	Management Management		1,
3.6.	Symme	tric Key Management Schemes		48
5.0.	3.6.1.	Distributed Key Pre-distribution		48
	3.0.1.	Scheme (DKPS)		10
	3.6.2.	Peer Intermediaries for Key		49
	3.0.2.	Establishment (PIKE)	•••••	7)
3.7.	Group I	Key Management Schemes		50
3.1.	3.7.1.			52
	3.7.1.	Protocols	•••••	32
	3.7.2.	Decentralized Group Key		53
	3.7.2.	Management Protocols		55
	3.7.3.	Distributed Group Key Management		53
	5.1.5.	Protocols		55
3.8.	Discuss			53
		A COMPARATIVE STUDY FOR		55
		MANAGEMENT IN MANET	•••••	33
4.1.	Introdu			55
4.2.		ized Group Key Management Protocols		57
7.2.	4.2.1.	With Keys Pre-distribution		57
	4.2.2.	With Keys Pre-distribution Without Keys Pre-distribution	•••••	
4.3.		ralized Group Key Management	•••••	60 62
٦.٥.	Protoco	- · · ·	•••••	02
				62
	4.3.1.	Enhanced BAAL Protocol		63

	4.3.2.	Dual Encryption Protocol (DEP)	 64
	4.3.3.	BALADE Protocol	 65
	4.3.4.	Other Protocols	 67
4.4.	Distribut	ted Group Key Management Protocols	 67
	4.4.1.	Chiang-Huang (C-H) Protocol	 67
	4.4.2.	Hierarchical, Simple, Efficient, and	 68
		Scalable Group Key Management	
		(HSESGK) Protocol	
	4.4.3.	Mobility Based Key Management	 73
		protocol (MBKM)	
	4.4.4.	Other Protocols	 76
4.5.	Discussi	on	 77
	4.5.1.	Centralized Group Key Management	 78
		Schemes	
	4.5.2.	De-centralized Group Key	 82
		Management Schemes	
	4.5.3.	Distributed Group Key Management	 83
		Schemes	
	4.5.4.	Comparison of the Group Key	 84
		Management Protocols	
CHAP	ΓER 5: A	NEW EFFICIENT AND SECURE	 89
KEY N	IANAGE	MENT SCHEME FOR MOBILE AD	
HOC N	ETWOR	KS	
5.1.	Introduc	tion	 89
5.2.	The Prop	posed Scheme	 89
	5.2.1.	Cluster Formation	 90
	5.2.2.	Cluster Head (CH) Selection	 91
	5.2.3.	Group Key Generation and	 92
		Distribution	
	5.2.4.	Cluster Group key Kc	 92
	5.2.5.	Cluster Head Group key KCH	 93
	5.2.6.	Session Key Ks	 93
	5.2.7.	Joining of a New Node	 94
	5.2.8.	Leaving of an Existing Node	 95
	5.2.9.	Message Flow of the Proposed	 95
		Scheme	
5.3.	Environi	nent of Experiments	 95
5.4.		on Results	 99
	5.4.1.	Basic Performance Metrics	 99
	5.4.2.	Experiments Results	 99
	5.4.3.	Additional Performance Metrics	 106
5.5.	Discussi	on of Simulation Results	 109

CHAF	TER 6: V	ERIFICATION OF THE PROPOSED	 112
PROT	OCOL		
6.1.	Introduc	etion	 112
6.2.	Scyther	Tool	 113
	6.2.1.	Verification of Claims	 115
	6.2.2.	Automatic Claims	 115
	6.2.3.	Characterization	 115
6.3.	The Mo	del Description	 116
6.4.	Properti	es Specifications	 118
6.5.	Formal	Verification	 119
6.6.	Propose	d Protocol Verification	 120
	6.6.1.	Node (N1) Role	 121
	6.6.2.	The First Cluster Head Role	 122
	6.6.3.	The Second Cluster Head Role	 123
	6.6.4.	The Second Node Role	 124
6.7.	Conclus	ion	 125
CHAF	TER 7: C	ONCLUSION AND FUTURE WORK	 126
7.1.	Conclus	ion	 126
7.2.	Suggest	ions for Future Work	 130
REFE	RENCES		 131

List of Figures

Figure 2.1:	MANET Architecture
Figure 2.2:	Range of Communication Technologies
Figure 2.3:	Passive Attack
Figure 3.1:	Categories of TTPs
Figure 3.2:	Establishment of Session Key Using KDC
Figure 3.3:	Components of a PKI
Figure 3.4:	The System Private Key
Figure 3.5:	An Example Of Certificate Chain
Figure 3.6:	Server Group Structure in SEKM
Figure 3.7:	Illustration of PIKE scheme
Figure 3.8:	The IP Multicast Model
Figure 4.1:	Classification of Group Key Management Protocols in MANETs
Figure 4.2:	Key Distribution Tree Based in the K-Means Algorithm
	The Group Key Generation and Distribution in Enhanced
Figure 4.3:	BAAL
Figure 4.4:	The Group Key Generation and Distribution in BALADE
Figure 4.5:	A Key Graph for C-H Protocol
Figure 4.6:	MANET Based on Clustering
Figure 4.7:	Double Multicast (Blue and Red) Trees Structure for a Cluster
Figure 4.8:	Blue Trees Point of View for Constructing Itself
Figure 4.9:	Red Trees Point of View for Constructing Itself
Figure 4.10:	Double Multicast (Blue and Red) 'Trees Structure among
	Cluster Heads
Figure 4.11:	The Main Idea of the Compared Key Management Schemes.
Figure 5.1:	The Cluster Model in MANET
Figure 5.2:	The Message Flow of the Proposed Scheme
Figure 5.3:	PDP versus Number of Nodes (at 5 m/sec)
Figure 5.4:	Overheads versus Number of Nodes (at 5 m/sec)
Figure 5.5:	Packet Drop versus number of nodes (at 5 m/sec)
Figure 5.6:	PDP versus Speed (at 10 nodes)
Figure 5.7:	Overheads versus Speed (at 10 nodes)
Figure 5.8:	Packet Drop versus Speed (at 10 nodes)
Figure 5.9:	PDP versus No of Nodes for the Proposed Scheme at Different Speeds
Figure 5.10:	Overheads versus No of Nodes for the Proposed Scheme at
	Different Speeds
Figure 5.11:	Packet Drop versus No of Nodes for the Proposed Scheme at
	Different Speeds
Figure 5.12:	NRL versus No of Nodes for the Proposed Scheme at Different
	Speeds.

Figure 5.13: Average Hop Count versus No of Nodes for the Proposed Scheme at Different Speeds. Figure 5.14: E-E Delay versus No of Nodes for the Proposed Scheme at Different Speeds. PLP versus No of Nodes for the Proposed Scheme at Different Figure 5.15: Speeds Figure 6.1: GUI of Scyther Tool Figure 6.2: Protocol Verification Flow Chart Figure 6.3: First Node Claims Result Figure 6.4: Cluster Head Claims Result Figure 6.5: Second Cluster Head Claims Result Figure 6.6: Second Node Claims Result

List of Tables

Table 2.1: Attack of Network Layers Table 3.1: **EBS Matrix** Table 4.1: **EBS Matrix** Table 4.2: Comparison of Centralized Protocols Comparison of Decentralized Protocols Table 4.3: Comparison of Distributed Protocols Table 4.4: Simulation Parameters of the Proposed Scheme Table 5.1: Various Performance Metrics for Different No. of Nodes at 5 m/s Table 5.2: Table 5.3: Various Performance Metrics for Different No. of Nodes at 20 m/s Table 6.1: Protocol Verification Message Types

List of Abbreviations

5G 5th Generation ACK Acknowledgment

AKMP Adaptive Key Management Protocol AODV Ad Hoc On Demand Distance Vector

AP Access Point

ARQ Automatic Repeat Request ARQ Automatic Repeat Request BAN Body Area Network

CA Certificate Authority

CAN Content Addressable Network

CBR Constant Bit Rate **CFF** Cover-Free Family Cluster Group Key **CGK** CH Cluster Head CM Cluster Member Challenge-Response CR **CREP** Confirmation Reply **CREO** Request for Confirmation

DCDP Dynamic Configuration and Distribution Protocol

DCF Distributed Coordination Function

DDHCP Distributed Dynamic Host Configuration Protocol

DEP Dual Encryption Protocol

DHCP Dynamic Host Configuration Protocol
DKPS Distributed Key Pre-distribution Scheme

DoS Denial of Service

DSDV Destination-Sequenced Outdistances Vector

DSR Dynamic Source Routing EBS Exclusion Basis System FEC Forward Error Correction

GC Global Controller **GDH** Group Diffie Hellman **GLC** Group of Local Controllers Global Positioning System **GPS** GUI Graphical User Interface Hypercube and Octopus H&O **IARP** Intra Zone Routing Protocol **IERP Inter-Zone Routing Protocol Initial Key Agreement IKA** IoT Internet of Things **Key Distribution Center KDC KEK Key Encryption Key**

KKA Known Key Attacks

KS Key Server

LAN Local Area Network
LC Local Controller
LKH Logical Key Hierarchy

LKHW Logical Key Hierarchy for Wireless sensor network

M2M Machine-to- Machine
 MAC Medium Access Control
 MAN Metropolitan Area Network
 MANET Mobile Ad Hoc Network

MBKM Mobility Based Key Management

MCH Main Cluster Head

MOCA Mobile Certificate Authority

MPR Multi-point Relay

NRL Normalized Routing Load NS-2 Network Simulator -2

OLSR Optimized Link State Routing

PAN Personal Area Network
PDP Packet Delivery Percentage
PFS Perfect Forward Secrecy

PHY Physical Layer

PIKE Peer Intermediaries for Key Establishment

PLP Packet Loss Percentage RA Registration Authority

RREP Route Reply RREQ Route Request RRER Route Error

SEKM Secure and Efficient Key Management

SGK Subgroup Key Server SHA Secure Hash Algorithm

SPDL Structured Programming Descriptive Language

SSD Secure Shared Key Discovery

TC Topology Control

TCP Transport Control Protocol
TEK Traffic Encryption Key
TTP Trusted Third Party

URSA Ubiquitous and Robust Access Control

VANET Vehicular Ad Hoc Network

WAN Wide Area Network
WMN Wireless Mesh Network
ZRP Zone Routing Protocol