POSTOPERATIVE 30 DAY FOLLOW UP OF LIVING DONOR LIVER TRANSPLANTATION (LDLT) RECEPIENTS; A MULTI-CENTER STUDY

Thesis submitted for partial fulfillment of master degree in Critical Care Medicine

By

Khalid Mohammad Atef Omar

M.B.B.Ch.
Faculty of Medicine, Cairo University

Under Supervision of:

Ahmed H. Mowafi, MD

Ahmed A. Battah, MD

Assistant Professor of Critical Care Medicine Critical care department Cairo University Assistant Professor of Critical Care Medicine Critical care department Cairo University

Yasser S. Nassar, MD

Lecturer of Critical Care Medicine Critical care department Cairo University

> Faculty of Medicine Cairo University 2012

Acknowledgements

For **ALLAH** the merciful, the compassionate, the creator and sustainer of the world, who said in his holy Quran: "We raise to degrees (of wisdom) whom we please, but overall endued with knowledge is one, the all-knowing" (Yusuf 76).

I would like to express my deepest gratitude to *Professor Dr. Sherif Mokhtar*, the godfather of Critical Care Medicine department, Cairo University not only the facilities to complete this work but also the spirit of being eager to gain more experience and skills.

I would like to thank *Dr. Ahmed Mowafy*, Assistant Professor of Critical Care Medicine, Cairo University, for his sincere contribution in this work.

I wish to express my deepest gratitude *Dr. Ahmed Battah*, Assistant Professor of Critical Care Medicine Cairo University, for his patience, continuous encouragement and meticulous guidance and follow up throughout this work.

Special thanks to *Dr. Yasser Nassar*, Lecturer of Critical Care Medicine, Cairo University, for his continuous help and support. I am extremely grateful to him for his generous advice and for his guidance and assistance throughout the whole work. I owe him great deal of refining & revising this work through the long time & patience he offered me.

Finally, I must thank all my colleagues, nursing staff & everyone who gave me help & support throughout my work. I do ask **ALLAH** to forgive me for any faults or forgets in this study

List of contents

•	Abstract	II
•	List of tables	III
•	List of figures	VI
	List of abbreviations	VII
•	Introduction & Aim of the study	1
•	Review of literature:	
•	Chapter I	4
•	Chapter II	17
•	Chapter III	28
•	Patients & Methods	48
•	Results	58
•	Discussion	107
•	Summary	142
•	Conclusion	145
•	References	
	Arabic summary	158

Abstract

Background: Living donor liver transplantation has emerged as a surgical technical achievement designed to increase the organ supply. Adult recipients have a wide range of disease severity and higher incidence of medical comorbidities, in addition, the use of a partial graft in an adult recipient predisposes the recipient to a unique set of potential technical and anatomic complications that are not prevalent in whole deceased donor grafts. [1]

Objectives: Careful analysis of variables that affect early graft outcome in LDLT is necessary to determine methods that may be manipulated to improve outcome.

Methods: A retrospective study involving 142 patients that underwent LDLT in two centers, International Medical Center "IMC" 113 cases and Kasr Elini hospital 29 cases, in the period from October 2004 to December 2010, were recruited in the study. Post-operative daily assessment was done, by recoding and following up all the clinical laboratory and radiological data, for a period of 30 days.

Results: The survival rate at the end of our study was 86.62%. The most frequent complications were renal complications (86.6%), pulmonary complications (73.9%), neurological complications (14 %), cardiovascular complications (12.6 %), infection (13.3%), intra-abdominal infections (10.5%) and immunosuppressant toxicity (7.7%).

Conclusion: LDLT is a major procedure that requires gathered efforts from members of the transplantation team considering all the events of the preoperative and intraoperative period as well as the scoring system, MELD score, to plan postoperative management and to identify potential complications early. This may help in proper management of the recipient.

Key words: Living Donor liver Transplantation – MELD score – post LDLT complications – graft failure.

List of tables

Num	Title	page
1	Demographic & clinical data of the included patients	59
2	The mean change in Heart rate observed weekly during one month.	61
3	Mean change in HR among survivors & non-survivors, observed weekly & in one month.	61
4	Change in Systolic blood pressure observed weekly during one month	62
5	Mean change in SBP among survivors & non-survivors, observed weekly & in one month	62
6	Mean change in DBP observed weekly during one month.	63
7	Mean change in DBP among survivors & non-survivors, observed weekly & in one month	63
8	The mean change in Temperature observed weekly during one month.	64
9	Mean change in DBP among survivors & non-survivors, observed weekly & in one month.	64
10	The mean change in Hb observed weekly during one month.	65
11	Mean change in Hb among survivors & non-survivors, observed weekly & in one month.	65
12	The mean change in Hct observed weekly during one month.	66
13	mean change in Hct among survivors & non-survivors, observed weekly & in one month	66
14	The mean change in Plt observed weekly during one month.	67
15	mean change in Plt among survivors & non-survivors, observed weekly & in one month	67
16	The mean change in TLC observed weekly during one month.	68
17	Mean change in TLC among survivors & non-survivors, observed weekly & in one month.	68
18	The mean change in CRP level observed weekly during one month.	69
19	Mean change in CRP among survivors & non-survivors, observed weekly & in one month.	69
20	The mean change in ALT observed weekly during one month.	70
21	Mean change in ALT among survivors & non-survivors, observed weekly & in one	71
22	The mean change in AST observed weekly during one month.	72
23	Mean change in AST among survivors & non-survivors, observed weekly & in one month.	72

24	The mean change in TBil observed weekly during one month.	73
25	Mean change in TBil among survivors & non-survivors, observed weekly & in one month	73
26	The mean change in DBil observed weekly during one month	74
27	Mean change in DBil among survivors & non-survivors, observed weekly & in one month	74
28	The mean change in GGT observed weekly during one month	75
29	mean change in GGT among survivors & non-survivors, observed weekly & in one month.	75
30	The mean change in ALP observed weekly during one month	76
31	mean change in ALP among survivors & non-survivors, observed weekly & in one month.	76
32	The mean change in INR level observed weekly during one month.	77
33	Mean change in INR among survivors & non-survivors, observed weekly & in one month.	77
34	The mean change in INR level observed weekly during one month.	78
35	Mean change in PTT among survivors & non-survivors, observed weekly & in one month.	78
36	The mean change in T.Prot level observed weekly during one month.	79
37	Mean change in T.Prot among survivors & non-survivors, observed weekly & in one month.	79
38	The mean change in Alb observed weekly during one month.	80
39	Mean change in Alb among survivors & non-survivors, observed weekly & in one month.	80
40	The difference in lactate between survivors & non survivors	81
41	The difference in ammonia between survivors & non survivors	82
42	The difference in PH between survivors & non survivors	82
43	The difference in Na HCO3 between survivors & non survivors	83
44	The mean change in Creat observed weekly during one month.	84
45	Mean change in Creat among survivors & non-survivors, observed weekly & in one month.	84
46	The mean change in Urea observed weekly during one month.	85
47	Mean change in Urea among survivors & non-survivors, observed weekly & in one month.	85
48	The mean change in Na observed weekly during one month.	86
49	Mean change in Na among survivors & non-survivors, observed weekly & in one month.	86
50	The mean change in K observed weekly during one month.	87

51	Mean change in K among survivors & non-survivors, observed weekly & in one month.	87
52	The mean change in Rt dr Bil observed weekly during one month.	88
53	Mean Rt dr Bil among survivors & non-survivors, observed weekly & in one month.	88
54	The mean change in Lt dr Bil observed weekly during one month.	89
55	Mean Lt dr Bil among survivors & non-survivors, observed weekly & in one month.	89
56	The mean change in Rt dr Hct observed weekly during one month.	90
57	Mean Rt dr Hct among survivors & non-survivors, observed weekly & in one month.	90
58	The mean change in Lt dr Hct observed weekly during one month.	91
59	Mean Lt dr Hct among survivors & non-survivors, observed weekly & in one month.	91
60	The mean change in FK observed weekly during one month.	92
61	Mean FK among survivors & non-survivors, observed weekly & in one month.	92
62	Incidence of medical complications in total patients group.	96
63	Incidence of medical complications among survivors and non survivors.	96
64	Incidence of surgical complications in total patients group	99
65	Incidence of surgical complications among survivors and non survivors.	99
66	Incidence & causes of graft failure .	100
67	Main & associated causes of mortality	101
68	ROC curve between Outcome and INR	104
69	ROC curve between Outcome and MELD score	105
70	ROC curve between Outcome and ICU stay	105
71	ROC curve between Outcome and Total bilirubin	106

List of figures

Num	Title	Page
1	Showing the different causes of transplantation.	60
2	Mean level of HR over four weeks post-operative	61
3	Mean level of SBP over four weeks post-operative	62
4	Mean level of DBP over four weeks post-operative	63
5	Mean values of Temp over four weeks post-operative	64
6	Mean levels of Hb over four weeks post-operative.	65
7	Mean values of Hct over four weeks post-operative.	66
8	Mean level of PLT over four weeks post-operative.	67
9	Mean level of TLC over four weeks post-operative	68
10	Mean level of CRP over four weeks post-operative.	69
11	Mean level of ALT over four weeks post-operative.	71
12	Mean level of AST over four weeks post-operative in Liver Transplantation.	72
13	Mean level of TBil over four weeks post-operative.	73
14	Comparison of direct bilirubin over four weeks post-operative.	74
15	Mean level of GGT over four weeks post-operative.	75
16	Mean level of ALP over four weeks post-operative	76
17	Mean level of INR over four weeks post-operative	77
18	Mean level of PTT over four weeks post-operative.	78
19	Mean level of T.Prot over four weeks post-operative.	79
20	Mean level of Alb over four weeks post-operative	80
21	ROC curve of lactate, ammonia, PH & Na HCO3.	83
22	Mean level of Creat over four weeks post-operative.	84
23	Mean level of Urea over four weeks post-operative.	85
24	Mean level of Na over four weeks post-operative.	86
25	Mean level of K over four weeks post-operative.	87
26	Mean Rt dr Bil over four weeks post-operative.	88

27	Mean Lt dr Bil over four weeks post-operative.	89
28	Mean Rt dr Hct over four weeks post-operative.	90
29	Mean level of Lt drain Bil in total group, survivors &non-survivors.	91
30	Mean level of FK in total patients group, survivors &non-survivors.	92
31	Incidence of medical complications post liver transplantation.	95
32	Incidence of surgical complications post liver transplantation.	98
33	Incidence of graft failure in the survivors versus the non survivors.	100
34	Causes & percentage of graft failure.	101
35	Main causes of mortality	102
36	The ICU stay in survivors versus non survivors	102
37	The MELD score in survivors versus non survivors.	103
38	ROC curve between INR and outcome	104
39	Relation between INR and outcome.	104
40	ROC curve between MELD score and outcome	105
41	Relation between MELD score and outcome.	105
42	ROC curve between ICU and outcome.	105
43	Relation between ICU stay and outcome.	105
44	ROC curve between TBil and outcome.	106
45	Relation between TBil and outcome.	106

List of abbreviations

Abbrev.	Meaning
AIDS.	Acquired immuno-defeciency syndrome
ALA	Antilymphocyte antibodies
Alb	Albumin
ALF	Acute liver failure
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
ANOVA	Analysis of variance test
AOCLD	Acute on chronic liver disease
ARDS	Adult respiratory distress syndrome
ARE	Acute rejection episode
AST	Aspartate aminotransferase
ATN	Acute tubular necrosis
B/B	Bad-to-bad group
B/G	Bad-to-good group
BE	Base excess
BP	Blood pressure
BUN	Blood urea nitrogen
Ca	Calcium
CBC	Complete blood count
CD	Cluster Of Differentiation
CEA	Carcino-embryonic antigen
СН	Cerebral herniation
CI	Cardiac index
CMV	Cytomegalo virus
Creat	Creatinine
CRP	C reactive protein
CT	Computed tomography
CTP	Child-Turcotte-Pugh
CVP	Central venous pressure
DBil	Direct bilirubin
DBP	Diastolic Blood Pressure
EBV	Epstein-Barr virus
ECG	Electrocardiography
EDHS	Egyptian Demographic Health Survey
EEG	Electroencephalography
ERCP	Endoscopic retrograde cholangio-pancreatography
ESLD	End-stage liver disease
ESR	Erythrocyte sedimentation rate
FBS	Fasting blood sugar
Fe	Ferrous
FFP	Fresh frozen plasma

FHF	Fulminant hepatic failure
FK	Tacrolimus
G/B	Good-to-bad group
g/dL	Gram per diciliter
G/G	Good-to-good group
GGT	Gamma glutryl transaminase
GI	Gastrointestinal
GIT	Gastro intestinal tract
GVHD	Graft versus host disease
HAT	Hepatic artery thrombosis
HAV	Hepatitis A virus
Hb	Hemoglobin
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
Hct	Hematocrit
HCV	Hepatitis C virus
HE	Hepatic encephalopathy
HIV	Human immune-deficiency virus
HR	Heart Rate
IAI	Intra-abdominal infections
ICU	Intensive care unit
IL-2	Interleukin-2
IMC	International Medical Center
INR	International normalized ratio
IPGF	The Initial poor graft function
IV	Intravenous
K	Potassium
LDH	Lactate dehydrogenase enzyme
LDLT	Live-donor liver transplantation
LMWH	Low Molecular Weight Heparin
\log_{e}	Logarthym
LT	Liver transplantation
Lt dr Bil	Left drain bilirubin
Lt dr Hct	Left drain Hct
MAP	Mean arterial pressure
MELD	Model for End-stage Liver Disease
mg/dL	Miligram per diciliter
mm Hg	Milimeter mercury
MMF	Mycophenolate mofetil
MRA	Magnetic resonance angiography
MRCP	Magnetic resonance cholangio-pancreatography
MRI	Magnetic resonance imaging
Na	NATRIEUM
NPV	Negative Predictive value
OKT3	Brand Name For Muromonab-Cd3, An Immunosuppressant Drug

	(Monoclonal Antibodies)
OLT	Orthotopic liver transplantation
PAP	Pulmonary artery pressure
PCWP	Pulmonary capillary wedge pressure
PELD	Pediatric End-stage Liver Disease
рН	Is ameasure of the acidity or basicity of an aqueous solution
PLOS	Prolonged length of stay
Plt	Platelets
PPV	Positive Predictive value
PT	Prothrombin time
PTLD	Post-transplant lympho-proliferative disorder
PTT	partial thromboplasin time
PVRI	pulmonary vascular resistance index
PVT	portal vein thrombosis
ROC	Receiver Operating Characteristic curve analysis
Rt dr Bil	Right drain bilirubin
Rt dr Hct	Right drain Hct
RV	Right ventricle
SBP	Systolic bloo pressure
SD	Standard Deviation
SE	Standard Error
SICU	Surgical intensive care unit
SPSS	Is A Statistical Program
SVR	Systemic vascular resistence
SVRI	Systemic vascular resistance index
T.Prot	Total protein
TBil	Total bilirubin
Temp	Temperature
TG	Triglyceride
TIBC	Total iron binding capacity
TIPS	Transjugular intrahepatic portosystemic shunt
TLC	Total leukocytic count
TPN	Total parenteral nutrition
UCSF	University of california, san francisco
UNOS	United Network of Organ Sharing
VS	VERSUS
wk	Week

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION:

gypt has the largest epidemic of hepatitis C virus (HCV) in the world, according to the Egyptian Demographic Health Survey [EDHS], in2009. The overall prevalence (percentage of people) positive for antibody to HCV was 14.7%, meaning that nine to eleven million Egyptians, have been exposed to hepatitis C, of which approximately 7.5 million are chronic carriers. In some rural areas over half the adult population carries HCV antibodies. [11] About 30 % of people infected with HCV spontaneously clear the virus from their system within six months, according to studies done in Egypt. The rest develop chronic hepatitis, which in about 25% of cases leads to cirrhosis and liver failure in 20 to 30 years. [1]

Without liver transplantation the prognosis for fulminant hepatic failure is extremely poor. Liver failure can be either acute (fulminant or subfulminant failure) or chronic (decompensated cirrhosis). Each disease entity presents unique features with important differences between the two entities. In the pretransplantation era, liver failure was nearly universally fatal, with mortality from fulminant hepatic failure of 80% to 90%, and 1-year mortality in decompensated cirrhosis of more than 50%. In contrast, liver transplantation patient survival is presently more than 85% at 1 year and more than 70% at 5 years, emphasizing the clinical benefit of liver transplantation for either acute or chronic liver failure. Both split-liver and live-donor liver transplantation (LDLT) offer additional hope to patients with liver failure in the presence of an ever-growing cadaveric organ shortage. [2]

A shortage of cadaver donors has resulted in some patients dying while waiting for a suitable donor. Another concern in our country is that cadaveric liver transplantation is still hindered by medico-legal and legislative aspects. [3]