Stem cell based therapy in experimental osteoarthritis

Thesis

Submitted for Partial fulfillment of the MD degree in Medical Biochemistry and Molecular Biology

By Yasmin Alhussainy Youns M.B.B.Ch.MSc.

Supervisors

Prof. Dr. Hazem Mahmoud Atta

Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Prof. Dr. Kamilia Ahmed Zaki

Professor & Head Departement of Medical Biochemistry, Faculty of Medicine, Misr University for Science and Technology

Prof. Dr. Laila Ahmed Rashed

Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Prof. Dr. Mohamed Ehab Eldeen Mustafa

Professor of Anatomy Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgment

First and foremost, thanks to ALLAH who is the most beneficial and the most merciful.

I had the honor to accomplish my work under the supervision of Prof. Dr. Hazem Mahmoud Atta, Professor of Medical Biochemistry, Faculty of Medicine, Cairo University. I really indebted to him for hid unlimited support & kind encouragement during this work.

I would like to express my sincere thanks to Prof. Dr. Kamilia Ahmed Zaki, Professor & Head Department of Medical Biochemistry, Faculty of Medicine, Misr University for Science and Technology for her big contribution and great help.

I would like to express my deep thanks to Prof. Dr. Laila Ahmed
Rashed, Professor of Medical Biochemistry, Faculty of Medicine, Cairo
University for her great help and understanding throughout the work.

I am indebted to Prof. Dr. Mohamed Ehab Eldeen Mustafa, Professor of Anatomy, Faculty of Medicine, Cairo University for his cooperation which is much indeed appreciated.

I am indebted to Prof. Dr. Soheir Mahfouz, Professor of Pathology, Faculty of Medicine, Cairo University, for her valuable guidance regarding histopathological examination.

I would like to express my deep thanks to all the members of molecular biology unit and biochemistry department, for their help & support.

Finally, no words can express my deepest thanks to my Family for their great support and outstanding encouragement during this work.

Abstract

Osteoarthritis is a degenerative joint disease generally characterized by progressive cartilage degeneration,. Stem cell therapy holds a great promise for the repair of injured tissues and organs, including OA. The present study aims to detect the effect of mesenchymal stem cells on osteoarthritis in rabbits and also to detect its possible mechaism of action.. The study was carried on 20 New Zealand White rabbits. They were divided into 6 groups follow: control group, phosphate Buffer group injected intra articularly(IA) by phosphate buffer, stem cell group recieved stem cells, the arthritis group induced by LPS, LPS & Stem cell treatment group injected by LPS then treated after one week by stem cells (IA), LPS &stem cell prophylactic group, rabbits were injected prophylactically by stem cells then by LPS. The results of the present study showed significant increase CRP and TNF-α in OA group compared to control group however when this group is treated with MSCs there was significant decrease in these parameters. Also, there was a significant decrease in TGFB and CTGF in OA group compared to control group and increased when treated with MSCs. Histopathological results shows improve of OA after stem cell therapy Conclusion, MSC can exert beneficial effect on OA possibly by a paracrine mechanism through regulation of inflammatory cytokines such as TNF-α and growth factors such as TGF-β and CTGF.

Key Words:

Mesenchymal stem cells
Osteoarthritis
Paracrine action of MSCs

List of contents

	Page
List of tables	I
List of figures	II
List of abbreviations	IV
Introduction & Aim of work	1
Review of literature	3
Materials & Methods	80
Results	99
Discussion	126
Summary, conclusion & recommendation	138
References	142
Arabic summary	

List of tables

Table 1	The oligonucleotide primers sequence of studied genes	95
Table 2	Mean & SD of CRP (C reactive protein), tissue expression of tumor necrosis factor-α (TNF-α) gene, transforming growth factor B (TGF-B) gene, connective tissue growth factor (CTGF) gene in the studied groups	100

List of figures

Figure 1	Risk factors of Osteoarthritis	5
Figure 2	Chondrocyte behavior	14
Figure 3	effects of intra-articular injections of TGF-B	21
Figure 4	classification of human stem cells	36
Figure 5	Schematic model describing adult stem cell differentiation	44
Figure 6	Schematic diagram for the proliferative hierarchy of mesenchymal progenitors.	63
Figure 7	Schematic representation of the interactions between mesenchymal stem cells and immune cells	74
Figure 8	Mean & SD of serum CRP among studied group	102
Figure 9	Mean & SD of TNF α relative expression among studied groups	103
Figure10	Mean & SD of TGF B relative expression among studied groups	105
Figure11	Mean & SD of CTGF relative expression among studied groups	106
Figure12	Correlation between serum CRP and PCR product of TNF α gene expression.	108
Figure13	Correlation between serum CRP and& PCR product of TGF gene expression.	109
Figure14	Correlation between serum CRP and& PCR product of CTGF gene expression.	110
Figure15	Correlation between PCR product of TNF α and TGF gene expression.	111
Figure16	Correlation between PCR product of TNF α and CTGF gene expression.	112

Figure17	Correlation between PCR product of TGF & CTGF gene expression	113
Figure18	Histopathological Results of Control group	114
Figure19	Histopathological Results of OA group	117
Figure20	Histopathological Results of prophylaxis group	120
Figure21	Histopathological Results of treatment group	123
Figure22	MSCs culture, identification and homing	125

List of abbrevations

AMH	Anti mullerian hormone
BM	Bone marrow
BMPs	Bone morphogenetic proteins
BMI	Body mass index
BMCs	Bone marrow cells
BMSCs	Bone marrow stem cells
bp	Base pair
bFGF	Basic fibroblast growth factor
BIO	6-bromoindirubin-3'-oxime
BM-MSC	Bone marrow mesenchymal stem cells
COX	Cyclooxygenases
CFU	Colony forming units
cDNA	Complementary DNA
CXCR4	Chemokine receptor type 4
CTGF	Connective tissue growth factor
CD	Cluster of differentiation
CFU-F	Fibroblastoid colony forming unit
СВ	Cord blood
CMV	Cytomegalovirus
DNA	Deoxyribonucleic acid
DC	Dendritic cells

DMEM	Dulbecco's modified Eagle's medium
dNTPs	Deoxynucleotide triphosphate
ECM	Extracellular matrix
EBV	Epstein-Barr virus
ES cells	Embryonic stem cells
EB	Ethidium Bromide
EULAR	European League Against Rheumatism
EGF	Epithelial growth factor
Fms	Fetal membranes
FBS	Fetal bovine serum
FOXP3	Forkhead box P3
GVHD	Graft-versus-host disease
GDFs	Growth and differentiation factors
G-CSF	Granulocyte-colony stimulating factor
GTC	Guanidine thiocyanate
HPRI	Human Placental Ribonuclease Inhibitor
HSCs	Hematopoietic stem cells
НРС	Hematopoietic progenitor cell
HSC cells	Hematopoietic stem cells
HLA	Human leukocyte antigen
hUC-MSCs	Human umbilical cord-derived mesenchymal stem
	cells
IL-1	Interleukin-1

IFNγ	Interferon-gamma
IFNβ	Interferon-β
IDO	Indoleamine 2,3-dioxygenase
iNOS	Inducible nitric-oxide synthase
ICM	Inner cell mass
ICAM-1	Inter-Cellular Adhesion Molecule 1
IDO	Indoleamine 2,3-dioxygenase
KS	Keratan sulfate
LPS	lipopolysaccharide
LFA-1	lymphocyte function—associated antigen 1
MSC	Mesenchymal stem cells
MTP joints	Metatarsophalangeal joint
MMPs	Matrix metalloproteinases
МНС	Major histocompatibility complex
M-MLV	Moleny – Murine Leukemia virus
MBCs	Mature blood cells
MMP	Matrix metalloproteinase
MT1	Membrane type 1
MI	Myocardial Infarction
MAPCs	Multipotent adult progenitor cells
NSAID	Non Steroidal Anti inflammatory Drug
NO	Nitric oxide
NK	Natural killer

OA	Osteoarthritis
PIP joints	Proximal interphalangeal joint
PG	Prostaglandins
PDGF	Platelet derived growth factor
PCR	Polymerase chain reaction
RT-PCR	Reverse transcriptase PCR
RT	Reverse transcriptase
RNA	Ribonucleic acid
ROS	Reactive Oxygen Species
SDF-1	Stromal-derived factor 1
SCNT	Somatic cell nuclear transfer
SCF	Stem cell factor
Treg	Regulatory T cells
TIMP	Tissue inhibitors of metalloproteinases
TNF α	Tumor necrosis factor alpha
TENS	Transcutaneous Electrical Nerve Stimulation
TGF-β	Transforming growth factor beta
TMB	Tetramethyl benzidine
Th	T-helper
Taq	Thermus aquaticus
TAE	Tris-Acetate EDTA
UCB	Umbilical cord blood
UCBT	Umbilical cord blood transplantation

VEGF	Vascular endothelial growth factor	
VCAM	Vascular cell adhesion molecule	
VLA-4/5	Very late antigen 4/5	
WBC	White Blood Cell	

Introduction and Aim of the Work

Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of connective tissue cells (*Owen et al.*, 1988) including bone, cartilage, tendon, muscle, and adipose tissue (*Colter et al.*, 2001). These cells may be isolated from bone marrow with ease and expanded in culture through many generations, while retaining their capacity to differentiate when exposed to appropriate signals.

The isolation of these cells from adult tissues raises opportunities for the development of novel cellular therapies without the ethical considerations associated with the use of embryonic stem cells. Multipotent cells have been isolated from various mesenchymal tissues in adults, including skeletal muscle, fat, and synovial membrane as well as hematopoietic, neural and hepatic tissues(*Deasy et al.*, 2001 and Weissman 2000).

Because of their multipotentiality and capacity for self-renewal, adult stem cells may represent units of active regeneration of tissues damaged as a result of trauma or disease (*Gage*, 2000). In certain degenerative diseases such as osteoarthritis (OA), stem cells are depleted and have reduced proliferative capacity and reduced ability to differentiate(*Murphy et al.*, 2002). The systemic or local delivery of stem cells to these individuals may therefore enhance repair or inhibit the progressive loss of joint tissue.

OA is characterized by degeneration of the articular cartilage, with loss of matrix, fibrillation, formation of fissures, and ultimately complete loss of the cartilage surface. Other articular tissues are also affected, including the subchondral bone, ligaments, joint capsule, synovial membrane, and periarticular muscles. Although OA affects a large proportion of the

population, there are few, if any, effective therapies available today that alter the pathobiologic course of the disease (*Felson et al.*, 2000).

Several tissue-engineering approaches have been used for the repair of joint lesions. For example, the fixation of implanted chondrocytes beneath a sutured flap of ectopic tissue, such as periosteum, has been widely used for the treatment of cartilage defects (*Brittberg et al.*, 2001). Other approaches have centered on the use of cells loaded on a scaffold and delivered to a lesion site. These methods are applicable to the repair of focal defects of defined dimensions, but not to the treatment of complex lesions that cover a large surface area of the joint and that may be associated with severe and progressive inflammatory conditions such as OA . MSCs have the capacity to repair fibrillated cartilage by a direct resurfacing of the articular cartilage or act to preserve subchondral or trabecular bone structure-associated mechanical integrity of the joint (*Kavalkovich et al.*, 2000 and Henry, 2004)

Aim of the work

The present study aims to detect the effect of mesenchymal stem cells on osteoarthritis in rabbits and also to detect its possible mechaism of action.

Osteoarthritis

Definition of Osteoarthritis:

Osteoarthritis is a clinical syndrome of joint pain and dysfunction, which not only affects the the articular cartilage, but also involves the entire joint, including the subchondral bone, ligaments, capsule, synovial membrane and periarticular muscles (*Brandt*, 2001a). Ultimately the articular cartilage degenerates with fissures, ulceration and progressive loss of proteoglycans, leading to tissue destruction (*Venkatesan et al.*, 2004). It occurs frequently in the hand, foot, knee, spine and hip joint and rarely in the ankle, wrist, elbow, and shoulder, the most common risk factors are age, excessive joint loading, and joint injury.

In spite of being common in the elderly, it also affects young people. The disease symptoms are debilitating and causes physical impairment (Buckwalter et al., 2004).

The American College of Rheumatology categorizes OA as a heterogeneous group of conditions that lead to joint signs and symptoms associated with defective integrity of articular cartilage, in addition to related changes in underlying bone and joint margins (*Hicks et al.*, 2001).

Epidemiology of Osteoarthritis:

Osteoarthritis can be defined epidemiologically (using radio graphic criteria) or clinically (using radio graphs and clinical symptoms/ signs). Using radio graphic criteria, 30% of individuals between the ages of 45 and 65 are affected, and more than 80% are affected by their eighth decade of