DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING IN ENDOMETRIAL AND CERVICAL CARCINOMAS

 $Essay \\ {\it Submitted for Fulfillment of the Master} \\ {\it Degree in Radiodiagnosis} \\$

Presented by
Samar Ramzy Ragheb Hanna
M.B., B.Ch.

Supervised by

Prof. Dr/ Mohamed Abdel-Aziz Ali

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Prof.Dr/ Sameh Abdel-Raouf Mahdy

Assisstant Professor of Radiodiagnosis
Faculty of Medicine,
Ain Shams University

Faculty of Medicine, Ain Shams university 2011

تكنولوجيا انتشار التصوير بالرنين المغناطيسي في سرطان بطانة الرحم وعنقه

رسالة توطئة للحصول على درجة الماجستير في الاشعة التشخيصية

مقدمة من سمر رمزى راغب حنا

تحت إشراف أد محمد عبد العزيز على أستاذ الاشعة التشخيصية كلية الطب – جامعة عين شمس

أرد سامح عبد الرعوف مهدى أرد سامح عبد الأشعة التشخيصية كلية الطب – جامعة عين شمس

كلية الطب جامعة عين شمس

SUMMARY

iffusion-weighted (MR) magnetic resonance imaging is a functional imaging technique whose contrast derives from the random motion of water molecules within tissues. Although its use in intracranial imaging has been established for a number of years, problems with motion and susceptibility artifacts have limited its application in abdominal and pelvic imaging. However, the development of new imaging techniques, particularly novel methods of data acquisition and imaging, has allowed much faster parallel acquisition with fewer artifacts, resulting in significant improvement in image quality in body applications. Because image contrast is derived from inherent differences in the restriction of the movement of water molecules, no exogenous contrast medium adminisration is required, so that diffusion-weighted sequences can now be included in routine patient assessment.

When diffusion-weighted MR imaging is used in gynecologic applications, cervical cancers have been shown to have significantly lower apparent diffusion coefficient (ADC) values compared with normal cervical tissue. Similar findings have been noted in endometrial cancers, with a tendency toward lower ADC values in higher-grade lesions. In addition, diffusion-weighted

LIST OF CONTENTS

Title	Page No.
L:ist of Abbreviations List of Figures List of Tables Abstract	III VIII
Introduction	1
Aim of the work	4
Review of Literature	
Normal anatomy of the uterus and cervix	5
Pathology of uterine neoplasms	15
Endometrial carcinoma	15
Basic principle of diffusion-weighted imaging	56
DWI manifestations in endometrial and cervical carcinomas	76
Summary	109
Conclusion	111
References	113
Arabic summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1): Nomenclatur	re of Uterine tumors	20
Table (2): DW studies v	with ADC values in uterine diseases	79

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Uterus anatomy	6
Figure (2):	Relations of the uterus	8
Figure (3):	Ligaments of the uterus	12
Figure (4):	Blood supply of the uterus	13
Figure (5):	Localized EIN lesion	17
Figure (6):	Endometrial Carcinoma grossly	19
Figure (7):	Well differentiated endometrial carcinoma	19
Figure (8):	Endometrial adenocarcinoma	21
Figure (9):	Endometrial stromal sarcoma	24
Figure (10):	Uterine (müllerian) adenosarcoma	25
Figure (11):	Gross photographs of malignant Müllerian mixed tumor.	26
Figure (12):	Uterine choriocarcinoma	27
Figure (13):	The myometrial tumor interface of a myxoid leiomyosarcoma.	30
Figure (14):	(A) Leiomyomas of the myometrium. (B) Leiomyosarcoma.	
Figure (15):	Normal fascicules of smooth muscle	
Figure (16):	Hyalinized necrosis characterized by scar	02
rigure (10).	formation	33
Figure (17):	Leiomyosarcoma demonstrating marked cytologic atypia	36
Figure (18):	Leiomyoma with atypia	36
Figure (19):	Vascular invasion of a leiomyosarcoma	
Figure (20):	The myxoma pattern of myxoid smooth muscle tumors	

LIST OF FIGURES (Cont...)

Title	Page No.
Myxoid leiomyoma with a marked pulmonary edema pattern	39
Mitotic figure in a myxoid smooth muscle tumor	40
Marked extracellular matrix in an epithelioid leiomyoma	41
Cellular epithelioid smooth muscle tumor	42
Cervical intraepithelial neoplasia (CIN)	46
Drawing of the uterus, cervix and vagina	48
Squamous cell carcinoma	51
Cervical adenocarcinoma	52
Adenosquamous carcinoma	53
Neuroendocrine tumors of the cervix	54
A single water molecule during diffusion	56
Diffusion weighted spin echo pulse	
sequence. Diffusion gradients	57
Conventional SE imaging.	61
Echo-planar imaging.	62
Comparison between single-shot and multishot echo-planar imaging	65
Visualization of the proton displacement front due to diffusion. Isotropic and anisotropic diffusion	66
	Myxoid leiomyoma with a marked pulmonary edema pattern

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (37):	Anisotropic nature of diffusion in the brain	67
Figure (38):	Calculation of signal intensity on an isotropic diffusion—weighted image	68
Figure (39):	Removal of T2-weighted contrast in the isotropic transverse DWI	69
Figure (40):	Creation of an ADC map	72
Figure (41):	Squamous cell carcinoma of the uterine cervix in stage IIb. (a) Sagittal fat-saturated T2-weighted image (b) Sagittal multiple planar reconstruction (MPR) DWI image (c) transverse DWI image (d) An ADC map.	81
Figure (42):	Stage Ib squamous cell carcinoma of the uterine cervix. a Axial T2-WI of the uterus. b Dynamic Contrast-Enhanced T1-WI With Fat Suppression. c DWI. d ADC map	82
Figure (43):	Grade II Adenocarcinoma Of The Endometrium. a Axial T2-WI Of The Uterus. b Contrast-Enhanced T1-WI With Fat Suppression. c DWI. d ADC map	85
Figure (44):	MR Images Of Endometrial Polyp. (a) T2-Weighted Image. (b) ADC map	86
Figure (45):	MR Images Of Uterine Endometrial Carcinoma. (a) T2-Weighted Image. (b) Contrast-Enhanced T1-Weighted Image. (c) ADC map	86

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (46):	MR Images of Submucosal Leiomyoma. (a) T2-Weighted Image. (b) ADC map	87
Figure (47):	T1a Endometrial Carcinoma. (a) Coronal T2-Weighted MR Image (b) False Color Map Derived From A High b-Value Image. (c) Fused Image	89
Figure (48):	T1c Endometrial Carcinoma (a) Axial T2-Weighted MR Image (b), Fused High b-Value Axial T2-Weighted MR Image (c), ADC map (d) Gadolinium-Enhanced Fat-Saturated T1-Weighted MR Image	90
Figure (49):	Superficial Myometrial Invasion By Endometrial Carcinoma. a Oblique Axial T2-Weighted Turbo Spin-Echo Image. b Axial Gadolinium-Enhanced T1-Weighted Image (Venous Phase). c Axial Diffusion Weighted Image	91
Figure (50):	Deep Myometrial Invasion By Endometrial Carcinoma. a Oblique Axial T2- Weighted Turbo Spin-Echo Image. b Axial Gadolinium enhanced T1-Weighted Image (Venous Phase). c Axial Diffusion-Weighted Image	92
Figure (51):	Endometrial Polyps. a Axial T2-WI. b DWI c ADC map	95
Figure (52):	Leiomyosarcoma of the myometrium. a Axial T2-WI. b Post-Contrast Axial T1-WI. c DWI. d ADC map	96

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (53):	Degenerated and Ordinary Leiomyoma of The Myometrium. a Axial T2-WI. b DWI. c ADC map	97
Figure (54):	Peritoneal Dissemination From An Ovarian Serous Adenocarcinoma. a T2-WI. b Post-contrast T1-WI. c DWI	99
Figure (55):	Peritoneal Dissemination From Ovarian Serous Adenocarcinoma (a) T1-WI (b) Post-Contrast T1-WI. (c) DWI	100
Figure (56):	With Squamous Cell Carcinoma Of The Uterine Cervix With Multiple Lymph Node Metastases. a Axial T2- WI. b DWI. c ADC map	103
Figure (57):	Left Para-Iliac Metastatic Lymph Node (A), DWI (B), T2 Weighted FSE Sequence (C) ADC map	104
Figure (58):	Stage IIIa Squamous cell carcinoma of the uterine cervix. (a) Transverse T2- Weighted Image before Therapy (b) Transverse DWI Image before Therapy. (c) Transverset2-Weighted image after Therapy (d) Transverse DWI Image after Therapy	105
Figure (59):	Flow chart of MRI diagnosis of gynecological diseases	

LIST OF ABBREVIATIONS

Abbrev.	Meaning
ADC	Apparent diffusion coefficient
AJCC	The American Joint Committee on Cancer
AUB	Abnormal uterine bleeding
CHESS	Chemical shift selective
CIN	Cervical intraepithelial neoplasia
CIS	Carcinoma in-situ
CNR	Contrast-to-noise ratio
DWI	Diffusion weighted imaging
EIN	Endometrial intraepithelial neoplasia
EPI	Echoplanar imaging
ETLs	Echo train lengths
FIGO	International Federation of Gynecology and Obstetrics
HCG	Human chorionic gonadotrophin
HIUML	Human uterine cervical malignant lymphoma
HPV	Human papilloma virus
HPF	High power field
Hz	Hertz
LMS	Leiomyosarcoma
MPG	Motion- providing gradient
MRI	Magnetic resonance imaging
MUSMN	Myxoid uterine smooth muscle neoplasms
Pap	Papanicolaou
RF	Radiofrequency
ROI	Region of interest

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Meaning
RT	Radiotherapy
SCJ	Squamocolumnar junction
SE	Spin-echo
SI	Signal intensity
SNR	Signal-to-noise ratio
T	Tesla
TE	Echo time
TR	Repetition time
UAE	Uterine arterial embolization
WI	Weighted image

ABSTRACT

Recent technical advances in diffusion-weighted imaging (DWI) greatly enhanced the clinical value of magnetic resonance imaging (MRI) of the body. DWI can provide excellent tissue contrast based on molecular diffusion and may be able to demonstrate malignant tumors. Quantitative measurement of the apparent diffusion coefficient (ADC) may be valuable in distinguishing between malignant and benign lesions.

The ADC can help to differentiate between normal and cancerous tissue in the uterine cervix and endometrium.

Also the ADC may be useful for monitoring the therapeutic outcome after chemotherapy and/or radiation therapy.

DWI demonstrates high intensity not only at the primary cancer site but also in detection of lymph node metastasis.

When added to conventional MRI findings, DWI and ADC values provide additional information and DWI may play an important role in the diagnosis of patients with gynecological diseases.

Key Words: Diffusion - ADC - Magnetic resonance imaging – uterus.

INTRODUCTION

Endometrial carcinoma is the most common female pelvic malignancy and the seventh most common neoplasm worldwide, with the highest incidence in North America and Europe. Endometrial carcinoma is staged according to the international Federation of Gynecology and Obstetrics surgical system (*Peungjesada et al., 2009*).

Endometrial cancer is staged according to a surgical system, because clinical estimation is incorrect in over 20% of cases (Savelli et al., 2008).

Endometrial carcinoma arises from the endometrial lining of the uterus. Fortunately it commonly presents with irregular vaginal bleeding so early in its growth, so most women become alerted to seek early diagnosis (Robertson, 2003).

Treatment and prognosis of endometrial carcinoma is influenced by tumor morphologic prognostic factors that include depth of myometrial invasion, cervical extension, and lymph node metastasis (Kinkel et al., 2006).

While cervical carcinoma is more prominent and more treatable than endometrial Carcinoma (Yang et al., 2004).

It is largely preventable disease that is characterized by long lead time. The precancerous lesions gradually progress through recognizable stages before developing into invasive disease (Saksouk, 2009).

Prognosis of the invasive cervical carcinoma is based on the stage, size and histological grade of the primary tumor and the status of lymph nodes. Assessment of the stage of the disease is important in determining whether the patient may benefit from surgery or receive radiation therapy (*Pannu et al., 2001*).

Recently, a new magnetic resonance (MR) technique called whole body diffusion weighted imaging (DWI) has been introduced for 1.5-Tesla MR scanners (*Takahara et al., 2004*).

DWI is based on water proton free motion. Most tumor lesions are associated with architectural malformations and water diffusivity changes, so that DWI sequence can be and has been used in tumor imaging in recent several years.

Although diffusion-weighted (DW) magnetic resonance (MR) imaging has yet to be fully applied to the body, it holds great potential for abdominal imaging, especially for the detection and characterization of focal lesions. It is known that apparent diffusion coefficient