A study of the Chromosomes In Glioma Cells

Thesis

Submitted for partial fulfillment of M.D. Degree in Anatomy

Presented By
Samy Abd EI-Hameed AbuSikkein
M.Sc. in Anatomy

Supervised by

Professor Doctor/Mostafa Kamel Ibrahim

Professor and the head of the Anatomy Department Faculty of Medicine -Ain Shams University

Professor Doctor/Hoda Mohamed Mahmoud

Professor of Anatomy
Faculty of Medicine - Ain shams University

Doctor/Azza Salah El-Din Soliman

Assistant Professor of Anatomy
Faculty of Medicine - Ain shams University

Doctor/Hussin EI-Sayed Moharram

Assistant Professor Of Neurosurgery Faculty of Medicine - Ain Shams University

Doctor/Ezzat Sayed EI-Sobky

Assistant Professor of Genetics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2005

الله الحرابي

" وَعَلَّمَكَ مَا لَم نَكُن تَعلَمُ وَكَانَ فَضلُ اللّهِ عَلَيكَ عَظِيمًا "

ربلات الحظريم

(سورة النساء جزء من الآية 113)

Acknowledgment

It is not easy to acknowledge all who helped me, directly and indirectly with continuous concern that helped me much during preparation and production of this work.

My profound thanks and appreciation to **Prof. Dr.**Mostafa Kamel Ibrahim, Professor and the Head of Anatomy Department, Faculty of Medicine, Ain Shams University, I owe him a lot of things that can not be enumerated here. However, the inestimable lesson I learned was that the scientific responsibility is hand by hand with coherent thinking. To him, I will be always grateful.

I would like to express my gratefulness and sincere appreciation to **Prof. Dr. Hoda Mohamed Mahmoud,** Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her endless patience and guidance. She has stood as the motivating power of each aspect of this study.

I wish to express my greatest gratitude and sincere thanks to **Prof. Dr. Azza Salah El-Din Soliman,** Assistant Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her supervision of this work, valuable remarks and suggestions that helped me in final production of this work.

I want to express my appreciation to **Prof. Dr. Hussin El-Sayed Moharram**, Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his unforgettable kind assistance, encouragement, valuable suggestions, continuous support throughout the course of this study and his meticulous reviewing of the work.

I wish to express my thanks to **Prof. Dr. Ezzat** Sayed El-Sobky, Assistant Professor of Genetics Faculty of Medicine, Ain Shams University, and one of the eminences of cytogenetics in Egypt, for his helpful efforts, valuable support and for providing facilities throughout the course of this research. His worthy remarks are beyond words of thanks. He spared no time or effort to help me.

Furthermore, I wish to express my deepest thanks and gratitude to **Prof. Dr. Nadia Galal El-Hefnawy**, Professor of Pathology, Faculty of Medicine, Ain Shams University, for her guidance and sincere help.

Finally, I would like to express my deepest thanks and gratitude to all of my professors, colleagues in Anatomy Department, Faculty of Medicine and family members who stood beside me throughout this work giving me their support, sympathy and guidance.

Contents

Subjects	Page number
Introduction and Aim of the work -	1
Review of Literature	
Chapter 1 (Embryological background)	
Chapter 2 (Histological background)	11
Chapter 3 (Histopathological review)	18
Chapter 4 (Cytogenetic review)	52
Subjects and Methods	138
Results	152
Discussion	208
Summary	225
Appendix	228
References	229
Arabic Summary	

List of tables

Number		Page
1	Derivatives of cerebral vesicles from	8
	caudal to rostral.	
2	WHO classification of gliomas.	20
3	WHO classification (2000) of tumors of	21
	neuroepithelial tissue.	
4	Different grading systems of astrocytic	39
	tumors.	
5	Symbols used in describing a karyotype.	82
6	Some transforming retroviruses.	109
7	Functional classification of oncogenes.	114
8a	Age distribution among the studied cases.	152
8b	Gender distribution among the studied	152
	cases.	
9	The clinical and karyotypic findings of	157
	the studied cases.	
10	The clinical and histopathological	158
	findings of the different karyotypic	
11	groups.	159
	The clinical and karyotypic findings of	
12	the different histopathological groups.	203
	Relation between age of the studied cases	
13	and karvotypes.	204

	Relation between gender and karyotyping	
14	in the studied cases.	205
	Relation between symptomatology and	
15	karyotyping in the studied cases.	206
	Relation between histopathology and	
16	karyotyping in the studied cases.	207
	Relation between WHO grading of the	
	studied cases and karyotyping.	

List of abbreviations

<u>Abbreviation</u>

Full Name

abl Abelson leukaemia

BANF Bilateral Acoustic Neurofibromatosis

CAAT Cytosine-Alanine-Thyronine

C-banding Constitutive heterochromatin banding

CDK 4 Cyclin Dependent Kinase 4

CDKIs Cyclin dependent kinase inhibitors

CDKN 2 Cyclic AMP dependent kinase number 2

CDKs Cyclin dependent kinases

CG Cytosine-Guanine

CGH Comparative genomic hybridization

CMF Calcium and Magnesium Free

CNS Central Nervous System

CNTF Ciliary Neurotropic Growth Factor

C-onc Cellular oncogene

CSF Cerebrospinal fluid

CT Computed tomography

CTGF-β Cytokine Transforming Growth Factor-β

dms Double minute chromosomes

DNA Deoxy ribonucleic acid

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

erb-B Avian erythroblastosis

FBS Fetal bovine serum

FGF 2 Fibroblast growth factor 2

FGFs Fibroblast growth factors

FISH Fluorescence in situ hybridization

fos FBJ murine ostosarcoma

Go Gap 0 phase of cell cycle

G1 Gap 1 phase of cell cycle

Gap 2 phase of cell cycle

G banding Giemsa banding techniques

GBM Glioblastoma multiforme

GTG G-bands by trypsin using Giemsa

Ha-ras Harvey murine sarcoma

Hx&E Haematoxyline & Eosin

ICP Intracranial pressure

IL-12 Interleukin 12

INF Interferone

ISCN International System for human Cytogenetic

Nomenculature

Ki-ras Kirsten murine sarcoma

LOH Loss of Heterozygosity

MDM 2 Murine double minute 2

MHC Major Histocompatibility complex

mos Moloney murine sarcoma

MRI Magnetic Resonance Imaging

MTSi Multiple Tumor Suppressor I

myb Avian myeloblastosis

myc Avian myelocytomatosis

NF 2 gene Neurofibromatosis 2 gene

Nor-banding Nucleolus organizing regions banding

P arm Petit arm of chromosome

PBS Phosphate buffer saline

PCR Polymerase chain reaction

PDGF Platelet Derived Growth Factor

PDGFR Platelet Derived Growth Factor Receptor

PDGFR-α Platelet Derived Growth Factor Receptor alfa

PNS Peripheral Nervous System

PXAs Pleomorphic Xanthoastrocytomas

q arm Long arm of a chromosome

Q-banding Quinacrine banding techniques

Q-staining Quinacrine staining

R-banding Reverse G-banding

Rb gene Retinoblastoma gene

RNA Ribonucleic acid

r.p.m. Revolution per minute

S Synthesis phase of cell cycle

SD Standard Deviation

sis Simian sarcoma

SPSS Statistical Program for Social Science

src Rous sarcoma

T-banding Telomeric region banding

TGF-β Transforming growth factor- β

T S gene Tumor suppressor gene

VEGF Vascular Endothelial Growth Factor

V-onc Viral oncogene

WHO World Health Organization

List of figures

Number		Page
1	The formation of neural folds, tube and	4
	neural crest.	
2	Flexures of the early developing brain.	7
3	Histogram of cells in the central nervous	9
	system.	
4	Layers of the cerebral cortex.	12
5	Different types of non-neuronal cells in	17
	the CNS.	
6	Diffuse astrocytoma involving the left	23
	cerebral hemisphere.	
7	Anaplastic astrocytoma of the left	26
	cerebral hemisphere.	
8	Glioblastoma involving both	29
9	hemispheres.	34
10	Subependymal giant cell astrocytoma.	43
11	Oligodendroglioma.	47
12	Ependymoma of 4 th ventricle.	53
13	Stages of mitosis.	55
14	Stages of meiosis.	59
15	Types of chromosomes.	61
16	G-banding of X-chromosome.	63
17	Chromosomes 1 and 2 using G-banding.	65

18	Chromosome 3 using G-banding.	65
19	Chromosomes 4 and 5 using G-banding.	67
20	Chromosome 6 using G-banding.	67
21	Chromosomes 7 and 8 using G-banding.	69
22	Chromosome 9 using G-banding.	69
23	Chromosomes 10 and 11 using G-	71
24	banding.	71
25	Chromosome12 using G-banding.	73
26	Chromosomes 13 and 14 using G-	73
27	banding.	75
28	Chromosome 15 using G-banding.	75
29	Chromosomes 16 and 17 using G-	77
30	banding.	77
31	Chromosome 18 using G-banding.	80
32	Chromosomes 19 and 20 using G-	84
33	banding.	85
	Chromosome 22 using G-banding.	
34	Chromosomes X and Y using G-banding.	89
35	Simplified diagram showing DNA	91
36	coiling.	93
37	Structure of the DNA.	94
38	Diagram of the structure of a typical	96
39	human structural gene.	100
40	Generation of somatic mosaicism.	113
41	Karyotype showing triploidy.	116

42	Types of translocation.	119
43	Chromosome inversion.	128
	Karyotype showing ring chromosome.	
44	Normal G-banded male karyotype.	140
45	Steps of signal transduction pathway.	142
46	loss of constitutional heterozygosity.	142
47	Multistage evolution of cancer.	143
48	Clonal numerical chromosome changes in	143
	pediatric astrocytic tumors.	
49	Laminar flow.	144
50	Culture flask.	148
51	CO ₂ incubator.	149
52	An inverted microscope.	149
	Growing colonies under inverted	
53	microscope.	153
54	Chamber slide.	154
55	Slides stained using Geimsa stain.	155
56	Imaging analyzer system.	156
57	metaphase spread as shown by imaging	164
	analyzer.	
58	Clinical presentation of the studied cases.	165
	Different sites of the studied tumors.	
59	Histopathological types of the studied	166
60	cases.	167
61	WHO grading of the studied cases.	168

62	Photomicrograph of normal cerebral	169
	cortex (superficial layers).	
63	Photomicrograph of normal cerebral	170
	cortex (deep layers).	
64	Photomicrograph of astrocytoma grade II.	171
	Photomicrograph of astrocytoma grade II.	
65	Photomicrograph of astrocytoma grade II.	172
	Photomicrograph of anaplastic	
66	astrocytoma grade III.	173
67	Photomicrograph of anaplastic	174
68	astrocytoma grade III.	175
69	Photomicrograph of anaplastic	176
70	astrocytoma grade III.	177
71	Photomicrograph of anaplastic	178
72	astrocytoma grade III.	179
73	Photomicrograph of GBM.	180
74	Photomicrograph of GBM.	181
75	Photomicrograph of GBM.	182
76	Photomicrograph of GBM.	183
77	Photomicrograph of GBM.	184
78	Photomicrograph of GBM.	185
79	Photomicrograph of GBM.	186
80	Photomicrograph of GBM.	187
81	Photomicrograph of pilocytic	190
82	astrocytoma.	191