

Ain-Shams University Faculty of Engineering

COHERENT QUANTUM SPIN TRANSPORT IN NANOSCALE DEVICES

A Thesis

Submitted in Partial Fulfillment

For the award of the Ph.D. Degree in Engineering Physics

By

Nabil Abd El Fatah Ibrahim Aly M.Sc. Ain Shams University, 2005

Supervisors

Prof. Dr. Adel H. PhillipsProfessor of Theoretical Solid State
Physics -Faculty of Engineering
Ain-Shams University.

Dr. Walid A. ZeinFaculty of Engineering
Ain-Shams University.

To

Engineering Physics, and Math. Dept. Faculty of Engineering, Ain-Shams University Cairo (2011) Ain-Shams University Faculty of Engineering

Name: Nabil Abd El-Fatah Ibrahim Aly.

Subject: Coherent Quantum Spin Transport in Nanoscale Devices.

Degree: Ph.D. thesis in Engineering Physics, Ain-Shams University, Faculty of Engineering, Engineering Physics and Math. Department (2011).

Refereeing Committee:

• Prof. Dr. Mahi R. Singh

Room 242, Physics and Astronomy Building

Department of Physics

University of Western Ontario

London, Ontario N6A 3K7, Canada

Phone: (519) 661-2111-ext. 86427

Fax: (519) 661-2033

Email: msingh@uwo.ca

- *Prof. Dr*. Salah El-Din Hassan Gamal El-Din Mohamed Faculty of Engineering-Ain-Shams University.
- *Prof. Dr*. Adel Helmy Phillips (Supervisor)

 Faculty of Engineering, Ain-Shams University.

ACKNOWLEDGEMENT

First of all, thanks and indebtedness are due to *ALLAH* who made this work possible.

I would like to express my deep thanks and gratitude to Prof. Dr. *Adel Helmy Phillips*, Professor of *Theoretical Solid State Physics*, Faculty of Engineering, Ain-Shams University, not only for suggesting the subject of this research work, but also for his close supervision, valuable guidance, help, encouragement, and kind criticism.

I would like to express my deep thanks and gratitude to Dr. *Walid A. Zein*, Faculty of Engineering, Ain-Shams University, for their supervision, continuous useful discussion, encouragement and motivation.

My thanks and gratitude extends to all the members of the Higher Technological Institute, for their continuous support and assistance.

I owe great thanks and sincere love to my family who supported me during difficult and hard times

Nabil A. I. Aly. 2011

ABSTRACT

Name: Nabil Abd El-Fatah Ibrahim Aly.

<u>Subject</u>: Coherent Quantum Spin Transport in Nanoscale Devices.

<u>Degree</u>: Ph.D. thesis in Engineering Physics, Ain-Shams University, Faculty of Engineering, Engineering Physics and Math. Department (2011).

Spintronics that utilizes the electron's spin degree of freedom rather than its charge for information processing and storage has been a subject of intense interest in recent decades. The practical realization of spin-based electronic circuits requires the development of efficient means to generate spin-polarized currents, and to manipulate and detect spins.

The present thesis is devoted to investigate the quantum spin transport through mesoscopic device. Two nanoscale devices are considered in thesis which are:

(i) Semiconducting Aharonov-Casher ring and a semiconducting quantum dot embedded in one arm of the ring. Two conducting leads are connected to such ring. The spin transport characteristics are conducted under the

effects of both electromagnetic field of wide range of frequencies and magnetic field.

(ii) The second spintronic device is a semiconducting quantum curved nanowire. The effects of both microwave and infrared radiations are taken into consideration.

For the first model of the investigated spintronic device, we deduce an expression for the conductance using Landauer formula. It is well known that shot noise and consequently Fano factor is powerful quantity to give information about controlling decoherence of spin dependent phenomena. So, we deduced an expression for both shot noise and Fano factor for the present ring. Aharonov-Casher investigated Numerical calculations are performed for both the conductance and Fano factor. The results show oscillatory behavior of the conductance. These oscillations might be due to the interplay of Rashba spin orbit coupling strength with the induced photons. Also, these oscillations are due to spin sensitive quantum interference effects caused by the difference in the Aharonov-Casher phase accumulated by the opposite spin states.

For spin transport induced by microwave and infrared radiations, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing) over the spin transport channels.

Our results are found concordant with those in the literature. The present spintronic device could find applications in quantum computing and quantum information processing (qubit).

Now, considering the second spintronic device:

An expression for both the spin polarization for spin injection current in semiconducting curved nanowire and the corresponding tunneling magnetoresistance (TMR) are deduced under the effect of microwave and infrared radiations. Numerical calculations are performed for the spin polarization and the tunneling magnetoresistance. The results show an oscillatory behavior of both the investigated parameters. This is due to Fano-type resonance and the interplay between the strength of the

spin orbit coupling and the induced photons in the subbands of the one-dimensional nanowire. Our results are found concordant with those in the literature. The present spintronic device, that is, the quantum curved nanowire might be used to be as a sensor for small strain in semiconductor heterostructures and also photodetector.

Keywords: Spintronic devices - Quantum spin transport through mesoscopic device - Semiconducting Aharonov-Casher ring - Semiconducting quantum curved nanowire - Spin orbit coupling (SOC), Conductance, Fano-factor, Spin polarization, Tunneling magnetoresistance.

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS	<u>Page</u>
Chapter I: Introduction	1
I.1 Mesoscopic Phenomena	4
I.1.1 Two-dimensional electron gas (2DEG)	5
I.1.2 Coulomb Blockade and Single-Electron	
Tunneling	8
I.1.3 Quantum Dot	9
I.1.4 Quantum Wire (QW)	12
I.2 Spintronics	14
I.3 History of Spintronics	16
I.4 Spin Polarized Tunneling	21
I.4.1 Magnetic Tunneling Junction (MTJ)	23
I.4.2 Jullière Model	24
I.5. Semiconductor Spintronics	26
I.5.1 Operating Principle of Spin-FET	27
I.6 Spin Injection	29
I.7 Dilute Magnetic Semiconductors (DMS)	32
I.8 Spin-Orbit Coupling (SOC) - Rashba &	
Dresselhaus	34
I.9 Photon Assisted Tunneling	35
I.10 Outline of Thesis	37

Chapter II: Theoretical Formulation of
Spintronic Mesoscopic Device 39
II. Model (ONE): Aharonov-Casher Semiconducting
Ring
II.1.a. Derivation of the Conductance for The
Proposed Model
II.1.b. Derivation of the Shot Noise and Fano-factor
for The Proposed Model
II. Model (Two): Quantum Curved Nanowire 54
II.1. Derivation of Spin Polarization, P, and
Tunneling Magnetoresistance, TMR, 55
Chapter III: Numerical Results and
Discussion
III.1.The Results of the First Model
III.1.a.The Quantum Conductance of Aharonov-
Casher Ring
III.1.b. Fano factor of Aharonov-Casher Ring Model
III.2.The Results for The Second Model Curved
Quantum Nanowire
Chapter IV: Conclusion

IV.1. Aharonov-Casher Semiconducting Ring	96
IV.2. Quantum Curved Nanowire	98
References	100
List of Publications	122
Appendix (MATLAB code and Data)	123
Arabic Abstract	

Chapter I: Introduction

•	Fig.I.1. Layers of a modulation doped GaAs–Al _x Ga ₁
	As heterostructure, and the corresponding band-
	bending diagram
•	Fig.I.2. Schematic diagram of the quantum dot, tunne
	barriers, and leads (Source lead, drain lead, and gate
	lead)9
•	Fig.I.3. Spatial variation of conduction and valence
	band energies in a QD
•	Fig.I.4. Quantum wire (QW) between two reservoirs
	contacts, and gate electrode
•	Fig.I.5. (a) Electrical conduction of multilayered
	magnetoresistive structure without an applied magnetic
	field. (b) Electrical conduction of the structure when ar
	applied magnetic field aligns the spins within the
	structure
•	Fig.I.6. Schematic illustration of electron tunneling in
	a F/I/F tunnel junction. (a) Parallel magnetic
	configuration: Spin-up carriers tunneling from the left
	electrode encounter a large number of unoccupied
	states in the spin-up band of the right electrode. The
	resistance is lower. (b) Antiparallel magnetic
	configuration: Spin-up carriers coming from lef

encounter a reduced number of unoccupied states in the
right spin-up band resulting in a higher degree of
scattering. The resistance becomes higher
• Fig.I.7. Schematic of a spin-FET, spin-polarized
electrons are injected into the semiconductor 2DEG
from the ferromagnetic source electrode (FM1).
Injected electrons start to rotate because of an effective
magnetic field created by a spin-orbit interaction. Spin-
flipped electrons cannot enter the ferromagnetic drain
electrode (FM2) because there is no state for the
flipped spin at the Fermi energy in FM2. A gate
voltage that can tune the spin-orbit interaction is used
to control the spin precession angle 29
hapter II: Theoretical Formulation of

\mathbf{C} Spintronic Mesoscopic Device.

•	Fig.II.1. Schematic view of an Aharonov- Casher
	semiconducting ring with the quantum dot embedded
	in one arm of ring. 42
•	Fig.II.2. The curved quantum nanowire (InAs-InGaAs)

connected from two ends by two metal leads. 54

Chapter III: Numerical Results and Discussion

•	Fig.III.1. The variation of the conductance " G " with
	the radius of the ring "a" at different values of,
	magnetic field " B ", gate voltage " V_g ", photon energies
	" E_{IR} , E_{UV} ", temperature "T", and frequency " ω_{Soc} " 70
•	Fig.III.2. The variation of the conductance " G " with
	magnetic field " B " at different values of the radius of
	the ring "a", gate voltage " V_g ", photon energies " E_{IR} ,
	E_{UV} ", temperature "T", and frequency " ω_{Soc} " 71
•	Fig.III.3. The variation of the conductance " G " with
	gate voltage " V_g " at different values of the radius of the
	ring "a", magnetic field "B", photon energies " E_{IR} ,
	E_{UV} ", temperature "T", and frequency " ω_{Soc} "
•	Fig.III.4. The variation of the conductance " G " with
	frequency " ω_{Soc} " at different values of the radius of the
	ring "a", magnetic field "B", gate voltage " V_g ", photon
	energies " E_{IR} , E_{UV} ", and temperature "T",
•	Fig.III.5. The variation of the Fano factor "F" with
	gate voltage " V_g " at different values of the radius of the
	ring "a", magnetic field "B", photon energies " E_{IR} ,
	E_{UV} ", temperature "T", and frequency
	" ω_{Soc} "
•	Fig.III.6. The variation of the Fano factor "F" with
	magnetic field " B " at different values of the radius of
	the ring "a", gate voltage " V_g ", photon energies " E_{IR} ,

	E_{UV} ", temperature "T", and frequency
	"ω _{Soc} "
•	Fig.III.7. The variation of the Fano factor "F" with
	frequency " ω_{Soc} " at different values of the radius of
	the ring "a", gate voltage " V_g ", magnetic field "B',
	photon energies " E_{IR} , E_{UV} ", and temperature
	"T"
•	Fig.III.8. The variation of the polarization "P" with
	strength of the spin-orbit coupling " α " at different
	values of radius of curvature "a", and photon energies
	"E _{MW} , E _{IR} "
•	Fig.III.9. The variation of the polarization "P" with
	the radius of curvature "a" at different values of the
	strength of the spin-orbit coupling " α ", and photon
	energies "E _{MW} , E _{IR} "
•	Fig. III.10. The variation of the polarization "P" with
	photon energy at different values of the radius of
	curvature "a", and strength of the spin-orbit coupling
	"α"
•	Fig. III.11. The variation of the polarization "P" with
	gate voltage "Vg" at different values of the radius of
	curvature "a", and strength of the spin-orbit coupling
	" α ", and photons energies " E_{MW} , E_{IR} "

•	Fig.III.12. The variation of the tunneling
	magnetoresistance "TMR" with strength of the spin-
	orbit coupling " α " at different values of the radius of
	curvature "a", and photon energies " E_{MW} , E_{IR} "
	91
•	Fig.III.13. The variation of the tunneling
	magnetoresistance "TMR" with the radius of curvature
	"a" at different strength of the spin-orbit coupling " α ",
	and photon energies " E_{MW} , E_{IR} "
	91
	Fig. III. 14 The varieties of the tunneling
•	Fig.III.14. The variation of the tunneling
•	magnetoresistance "TMR" with photon energy at
•	
•	magnetoresistance "TMR" with photon energy at
•	magnetoresistance "TMR" with photon energy at different values of the radius of curvature "a", and
•	magnetoresistance "TMR" with photon energy at different values of the radius of curvature "a", and strength of the spin-orbit coupling " α "
•	magnetoresistance "TMR" with photon energy at different values of the radius of curvature "a", and strength of the spin-orbit coupling " α " 92 Fig.III.15. The variation of the tunneling
•	magnetoresistance "TMR" with photon energy at different values of the radius of curvature "a", and strength of the spin-orbit coupling " α " 92 Fig.III.15. The variation of the tunneling magnetoresistance "TMR" with gate voltage " V_g " at