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ABSTRACT

Name: Nabil Abd El-Fatah Ibrahim Aly.

Subject: Coherent Quantum Spin Transport in

Nanoscale Devices.

Degree: Ph.D. thesis in Engineering Physics, Ain-

Shams University, Faculty of Engineering,

Engineering Physics and Math. Department (2011).

Spintronics that utilizes the electron’s spin degree

of freedom rather than its charge for information

processing and storage has been a subject of intense

interest in recent decades. The practical realization of

spin-based electronic circuits requires the development of

efficient means to generate spin-polarized currents, and to

manipulate and detect spins.

The present thesis is devoted to investigate the

quantum spin transport through mesoscopic device. Two

nanoscale devices are considered in thesis which are:

(i) Semiconducting Aharonov-Casher ring and a

semiconducting quantum dot embedded in one arm of the

ring. Two conducting leads are connected to such ring.

The spin transport characteristics are conducted under the



effects of both electromagnetic field of wide range of

frequencies and magnetic field.

(ii) The second spintronic device is a semiconducting

quantum curved nanowire. The effects of both microwave

and infrared radiations are taken into consideration.

For the first model of the investigated spintronic

device, we deduce an expression for the conductance

using Landauer formula. It is well known that shot noise

and consequently Fano factor is powerful quantity to give

information about controlling decoherence of spin

dependent phenomena. So, we deduced an expression for

both shot noise and Fano factor for the present

investigated Aharonov-Casher ring. Numerical

calculations are performed for both the conductance and

Fano factor. The results show oscillatory behavior of the

conductance. These oscillations might be due to the

interplay of Rashba spin orbit coupling strength with the

induced photons. Also, these oscillations are due to spin

sensitive quantum interference effects caused by the

difference in the Aharonov-Casher phase accumulated by

the opposite spin states.



For spin transport induced by microwave and

infrared radiations, a random oscillatory behavior of the

Fano factor is observed. These oscillations are due to

constructive and destructive spin interference effects.

While for the case of ultraviolet radiation, the Fano factor

becomes constant. This is due to that the oscillations has

been washed out by phase averaging (i.e. ensemble

dephasing) over the spin transport channels.

Our results are found concordant with those in the

literature. The present spintronic device could find

applications in quantum computing and quantum

information processing (qubit).

Now, considering the second spintronic device:

An expression for both the spin polarization for spin

injection current in semiconducting curved nanowire and

the corresponding tunneling magnetoresistance (TMR)

are deduced under the effect of microwave and infrared

radiations. Numerical calculations are performed for the

spin polarization and the tunneling magnetoresistance.

The results show an oscillatory behavior of both the

investigated parameters. This is due to Fano-type

resonance and the interplay between the strength of the



spin orbit coupling and the induced photons in the

subbands of the one-dimensional nanowire. Our results

are found concordant with those in the literature. The

present spintronic device, that is, the quantum curved

nanowire might be used to be as a sensor for small strain

in semiconductor heterostructures and also photodetector.

Keywords: Spintronic devices - Quantum spin

transport through mesoscopic device - Semiconducting

Aharonov-Casher ring - Semiconducting quantum curved

nanowire - Spin orbit coupling (SOC), Conductance,
Fano-factor, Spin polarization, Tunneling
magnetoresistance.
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