The Relation between Serum Ascorbic Acid Concentration and Preterm Premature Rupture of Membranes

Thesis

Submitted for the Partial Fulfillment of the Master Degree in **Obstetric and Cynecology**

Presented by Karim Mohamed Ezz El Din Mohamed

(M.B.,B.Ch)2009
Ain Shams University
Obstetric and Gynecology Resident at Manshyet El Bakry Hospital

Under supervision of

Prof. Sherif Mohamed Habib

Professor of Obstetric and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mohamed Hussein Mostafa

Assistant Professor of Obstetric and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Sherif Mohamed**Thabib, Professor of Obstetric and Gynecology Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mohamed Hussein**Mostafa, Assistant Professor of Obstetric and Gynecology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Karim Mohamed Ezz El Din Mohamed

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	6
List of Figures	7
Introduction	1
Aim of the Work	4
Review of Literature	
The Fetal Membranes	5
Premature Rupture of Membranes	16
Ascorbic Acid (Vitamin C)	44
Patients and Methods	48
Results	54
Discussion	63
Summary	67
Conclusion	
Recommendations	71
References	72
Arabic Summary	

List of Abbreviations

Abb.	Full term
AF	Amniotic fluid.
	Amniotic fluid index
	Amniotic fluid-derived stem
	Bacterial vaginosis
	Contraction-associated proteins
	Corticotropin-releasing hormone
	C-reactive protein
	Caeserean section
	Cerebrospinal fluid
	Diamine oxidase.
	Dehydroepiandrosterone sulfate
	Enzyme-linked immune sorbent assay.
	Fetal Fibronectin
	Gestational age
	Human chorionic gonadotrophins
	Highly Significant
	Interleukin
	Loop Electrosurgical Excision Procedure
	Lipopolysaccharide
	Matrix metalloproteinases
	Messanger Ribonucleic Acid
	Non significant
	Prostaglandin.
	Premature rupture of membrane.
	Preterm premature rupture of membranes.
	Respiratory distress syndrome.
	Significant
	Tissue inhibitors of matrix metalloproteinases
	Total leucocytic count
	Tumor necrotic factor
	Ultrasonograph
	0 1

List of Tables

Table No.	Title	Page No.
Table (1):	Basic characteristics of PPROM g	group54
Table (2):	Basic characteristics of Non-PRO	M group56
Table (3):	Comparison of age, GA, Tempera Ascorbic acid levels between groups	studied
Table (4):	Comparison of parity between groups	
Table (5):	Correlation of different factors Ascorbic acid level among PPROI	O
Table (6):	Comparison of age, GA, Tempera Ascorbic acid levels as regard among PROM group	ls parity

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	Fetal membranes: Anatomy		5
Figure (2):	Schematic Representation of Structure of the Fetal Membrane Term.	es at	7
Figure (3):	Various Mechanisms That Have Proposed to Result in PROM or PPR		7
Figure (4):	Placental corticotropin-releasing hor (CRH) stimulates fetal adproduction of dehydroepiandrost sulfate (DHEA-S) and cortisol	lrenal erone	6
Figure (5):	Ascorbic acid and dehydroascorbic Ascorbic acid is the reduced for vitamin C	acid. m of	_
Figure (6):	Bar chart of the mean values in PF patients:		5
Figure (7):	Pie chart for percentage of pari PPROM group.		5
Figure (8):	Bar chart of the mean values in PPROM patients		7
Figure (9):	Pie chart for percentage of parity in PPROM group		7
Figure (10):	Bar char of comparison of patients PPROM and without PPROM		9
Figure (11):	Correlation between to serum Ase acid and gestational age		1

Introduction

reterm premature rupture of membranes (PPROM) is defined as rupture of the chorioamniotic membranes before the onset of labor prior to 37 weeks of gestation. PPROM is further classified by gestational age: midtrimester (less than 24 weeks), early (24 to 34 weeks), and near-term (34 to 37 weeks) (Mackeen et al., 2014). Preterm premature rupture of the fetal membranes (PPROM) affects 2–4.5% of all pregnancies and is associated with perinatal morbidity and mortality (Van De Laar et al., 2009).

Preterm premature rupture of membranes is the leading known cause of preterm birth affecting approximately one-third of all births delivered prior to 37 weeks gestation (Dadvand et al., 2014). One of the primary causes of perinatal morbidity is intrauterine infection, which complicates 40-70% of PPROM cases (Tita & Andrews, 2010).

There are many known or suspected causal pathways to preterm premature rupture of membranes as black race, lower socioeconomic status, smokers, past history of sexually transmitted infections, previous preterm delivery, polyhydramnios and multiple pregnancy (Simmons et al., 2010).

Others procedures such cerclage are as and amniocentesis. The aetiology is multifactorial (Medina & Hill, *2006*).

A significant association between low Vitamin C levels and premature rupture of membranes was found. It is thought that the mechanism for PPROM may be a degradation in the collagen of the amniotic sac, higher levels of ascorbic acid seem to be a protective factor against a weakened membrane leading to PPROM (Osaikhuwuomwan et al., 2011).

The micronutrient vitamin C is an effective water soluble antioxidant that scavenges several reactive oxygen species, thus reducing oxidative stress. It also acts as an enzymatic cofactor to the enzymes lysyl hydroxylase and prolyl hydroxylase, which is required for synthesis of hydroxyproline and hydroxylysine. Collagen requires hydroxyproline bridges across the triple helix to provide stability to it, Ascorbic acid also causes downregulation of the metalloproteinase-2 and biosynthesis of collagen where it is required for the formation of triple helical structure of collagen. Thus, ascorbic acid participates in the equilibrium between synthesis and degradation of collagen and this may be critical in reducing the occurrence of preterm PROM (Shen et al., 2008).

Vitamin C cannot be synthesized by the body hence it is only gotten from dietary sources or supplementation (Stevn et al., 2003). Dietary or supplemental dose of 60-100mg of Vitamin C has been recommended to maintain normal plasma levels (Salminen & Alfthan, 2008).

Studies propose a relationship between low vitamin C intake and an increased risk of preterm premature rupture of membranes. Also they propose that vitamin C can prevent premature rupture of membranes through its role as an antioxidant or in collagen synthesis and maintenance. Therefore, Vitamin C supplement is recommended to be administered for pregnant women with the history of PPROM during pregnancy to prevent PPROM (Ghomian et al., 2013).

AIM OF THE WORK

Research Hypothesis:

n women with Preterm premature rupture of membranes (PPROM), vitamin C may have a role in this condition.

Research Question:

In women with Preterm premature rupture of membranes (PPROM), is there a relation between serum vitamin C levels and this condition?

Aim:

This study aims to investigate the association between maternal serum vitamin C levels and occurrence of Preterm premature rupture of membranes (PPROM) in pregnant women.

Chapter 1

THE FETAL MEMBRANES

retal membranes are composed of two layers: an outer layer (chorion), an inner layer (amniotic membrane) (Mamede et al., 2012).

Inspection of the fetal membranes following delivery reveals amnion that is mildly adherent to the fetal side of the chorion. Small amounts of maternal decidual tissue can be observed attached to the outer, maternal side of the chorion (Guller, 2011).

Anatomy of the fetal membranes:

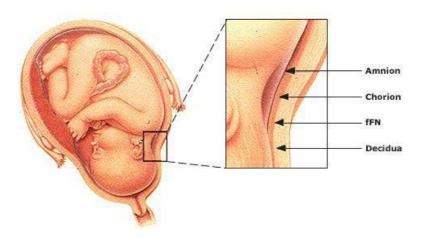
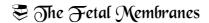


Figure (1): Fetal membranes: Anatomy (*Guller*, 2011). (1) Amnion, (2) Chorion, (3) Fetal Fibronectin, (4) Decidua

Anatomy of the amnion:

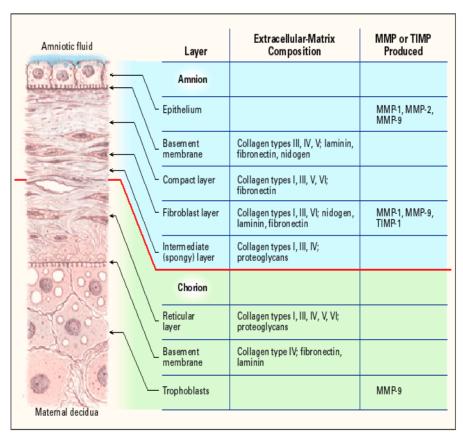

Amnion is the thin membrane on the inner side of the placenta; it completely surrounds the embryo/fetus and delimits the amniotic cavity, which is filled by amniotic fluid (Mamede et al., 2012).

The fetal surface is smooth and glistening. Through amnion three umbilical vessels can be seen embedded in Wharton jelly, these are two umbilical arteries and one umbilical vein. The amnion is loosely attached to Wharton jelly except at the site of insertion of the umbilical cord in the placenta. The amnion contains no blood vessels or nerves, the nutrients it requires are supplied by the amniotic fluid *(McParland & Bell, 2004)*.

Amnion is divided into 3 parts:

- Reflected amnion is fused to the chorion leavea.
- Placental amnion covers the placental surface and is in contact with the adventitial surface of chorionic vessels.
- Umbilical amnion covers the umbilical cord.

(Cunningham et al., 2010a)



Review of Literature —

Anatomy of the chorion:

The chorion is the outer fetal envelope which is adjacent to the outer aspect of the amnion, and through which the major branching umbilical vessels travel on the surface of the placenta. The chorion laeve is generally more nearly translucent than the amnion and rarely exceeds 1 mm thickness (Cunningham et al., 2010a).

Histology of the fetal membranes:

Figure (2): Schematic Representation of the Structure of the Fetal Membranes at Term. The extracellular-matrix composition of each layer and the production sites of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) are shown (*Parry and Strauss*, 1998).

Histology of the amnion:

According to *Mcparland & Bell (2004)*, the amnion consists of five layers which are from within outward:

a- The epithelium:

This is composed of a single layer of apparently simple non ciliated cuboidal cells.

b- The basement membrane:

This is a narrow band of thin layer of reticular tissue lying along the base of epithelial cells to which it is adherent securely.

c- The compact layer:

This is a relatively dense acellular layer of collagen fibers lying deep to basement membrane to which it is densely adherent and from which it cannot be separated.

d- The fibroblast layer:

It is the most complex of the five amniotic layers. It is composed of fibroblast network set in a mesh of reticulin. The only cells normally present are fibroblasts and Hofbauer cells (Macrophages). Normally, this layer forms a considerable part of the thickness of the amnion.

e- The spongy layer:

It is composed of extraembryonic celomicreticulum, contains a nonfibrillar meshwork of mostly type III collagen.