CORE ANTIGEN LEVELS AND MTHFR POLYMORPHISM AS MARKERS FOR LIVER STEATOSIS IN CHRONIC HCV GENOTYPE 4 PATIENTS

By

EMAN MOHAMED MAHMOUD MOHAMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

THESIS

Submitted in Partial Fulfillment of the Requiremets for the Degree of

MASTER OF SCIENCES

In

Agriculural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

CORE ANTIGEN LEVELS AND MTHFR POLYMORPHISM AS MARKERS FOR LIVER STEAROSIS IN CHRONIC HCV GENOTYPE 4 PATIENTS

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

EMAN MOHAMED MAHMOUD MOHAMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

APPROVAL COMMITTEE

Dr. YAHYA SHAKER MOHAMED HAMED Researcher Professor of Biochemistry, National Research Centre
Dr. MOHI EI DDIN ALI OSMAN
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. AHMED ABO ABOUL-ENEIN
Professor of Biochemistry Fac. Agric., Cairo University
Dr. SAYED ABD EL-KADER SAYED
Professor of Biochemistry Fac. Agric., Cairo University

Date: 22 / 04 / 2017

SUPERVISION SHEET

CORE ANTIGEN LEVELS AND MTHFR POLYMORPHISM AS MARKERS FOR LIVER STEAROSIS IN CHRONIC HCV GENOTYPE 4 PATIENTS

M.Sc. Thesis
In
Agricultural Sci. (Biochemistry)

By

EMAN MOHAMED MAHMOUD MOHAMED B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

SUPERVISION COMMITTEE

Dr. AHMED MAHMOUD ABOUL- ENEIN Professor of Biochemistry Fac. Agric., Cairo University

Dr. SAYED ABD EL-KADER SAYED
Professor of Biochemistry Fac. Agric., Cairo University

Dr. MOSTAFA KAMEL EL-AWADY Researcher Professor of molecular genetics, National Research Center Name of Candidate: Eman Mohamed Mahmoud Degree: M.Sc.

Title of Thesis: Core antigen levels and MTHFR polymorphism as markers for liver Steatosis in chronic HCV genotype 4 patients.

Supervisors: Dr. Ahmed Mahmoud Aboul-Enein

Dr.Sayed Abd-Elkader Sayed Dr.Mostafa Kamel El-Awady

Department: Biochemistry Approval: 22 / 4 / 2017

ABSTRACT

Methylene tetrahydrofolate reductase (MTHFR) 677CT polymorphism was reported as a genetic variant in liver steatosis and fibrosis. This research was conducted to study the association between MTHFR 677CT polymorphism and HCV core with severity of steatosis in HCV GT4 patients. 111 HCV patients and 112 control subjects were recruited. Polymorphism was detected by RFLP analysis, core Ag was detected by ELISA. The study included 56 (51%) males and 55 (49%) females. The median age of the recruited patients was 39.4±8.6 years. The mean of (BMI) was 26.6±2.38 kg/m². The degree of steatosis was correlated with age (p-value< 0.018), BMI (p-value< 0.003), platelets (pvalue< 0.001), albumin (p-value< 0.001), and Hb (p-value< 0.023) But there no statistically significant differences between different grades of steatosis and serum ALT, AST, WBCs, Bilirubin, HCV RNA concentration and gender. Further statistical analysis showed a strong correlation between steatosis and the progression rate of fibrosis. The frequencies of MTHFR 677C→T genotypes (CC, CT, and TT) among chronic HCV patients who have steatosis were 32%, 50%, and 18%, respectively among controls where 65%, 28%, and 7% respectively, whereas among patients who have no steatosis were 63%, 33%, and 4% respectively. Comparing HCV patients with steatosis to controls revealed that the risk steatosis was 3.63 fold higher in patients who have steatosis the than in patients without the T substitution (95% CI 1.92-6.82) and 5.21 fold in patients with two alleles (95% CI 2.01-13.54). When comparing the chronic HCV patients with steatosis to those without steatosis, the data showed that patients with single allele substitution i.e. CT had 2.88 fold more risk to develop steatosis than those having CC genotype (95% CI 1.08-7.68). While those with 2 allele substitution i.e. TT are 8.57 fold higher risk to develop steatosis (95% CI 1.03-71.08). The normal (C) allele frequency of MTHFR at position 677 in 87 chronic HCV patients who have steatosis was 57% while in controls it was 79%. The mutant (T) allele frequency in 87 chronic HCV patients who have steatosis was 43% while in controls it was 21%. We investigated the level of the circulating HCV core protein in the recruited patients. The data illustrate that there is no significant difference between the core antigen titer and degree of steatosis.

Key words: HCV; MTHFR C677T polymorphism; liver steatosis

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my soul daughter Sara and Lara, as well as to my husband Aseem and my Mother for all the support their lovely offered along the period of my post graduation.

Also, this thesis is dedicated to the Godfather, Prof.Dr. Mostafa Elawady who has been a great source of motivation and inspiration.

ACKNOWLEDGMENT

First and foremost thanks for **ALLAH** who gives me everything I have.

The auther wishes to express her deepest gratitude and appreciation to **Dr. Mostafa Kamel El-Awady**, Professor of Molecular Genetics, National Research Center, for suggesting the point of this thesis, building up the hypothesis related to the results. Also, I thank him for his kind supervision continuous support and valuable guidance in all of the theoretical and practical aspects of this work. I am very lucky to have great opportunity to be one of his students.

The auther wishes to express her appreciation and gratitude to **Dr. Ahmed Aboul Enein** Professor of Agriculture Biochemistry Department, Cairo University, for his supervision, continued assistance and revision the manuscript constructive.

I wish to express my indebtedness and profound grantitude to **Dr.Reham Dawood** Researcher in Microbial Biotechnology Department, National Research Center for her valuble advice and helpful discussion throughout the research, criticism. Without her help, this work would not be possible.

I would also like to thank **Dr. yasmine El Abd** Researcher in Microbial Biotechnology Department, National Research Center for her help, encouragement and continuous assistance.

Sincere gratitude is due to **Dr.sayed abd el kader** Professor of Agriculture Biochemistry Department, Cairo University, for his supervision and constructive encouragement.

ABBREVIATIONS

A Adenine

AdoMet S-adenosyl methionine **AdoHcy** Adenosyl homocystine

ADRP Adipocyte differentiation-releated protein

AICAR 5-amino-4-imidazolecarboxamide ribonucleotide

transferase

APS Amonium per sulphate
ATP Adenosine triphosphate
AcLDL Acylated LDL AcLDL
ALT Alanine aminotransferase

AOX Acyl coA oxidase

AST Aspartat aminotransferase

BHMT Betaine homocysteine methyl transferase

bp Base pair

BMI Body mass index

BSA Bovine serium albumin

CPT-1 Carnitine palmitory transferase-1

C Cytosine

CBS Cystathionine β-synthase **CI** Confidence interval

dATP Deoxy adenine triphosphate
 dCTP Deoxy cytosine triphophate
 dGTP Deoxy guanine triphosphate
 DGAT1 Diacylglycerol Acyltransferase 1

DHF Dihydrofolate.

DHFR Dihydrofolate reductase.DNA Deoxy nucleic acid

dNTPs Deoxy nucleotides triphophate

DS Down syndrome

dTMP Deoxy thymidine monophosphatedUMP Deoxy uridine monophosphatedUTP Deoxy uridine triphosphate

EDTA Ethylene diamine tetra acetic acid

ER Endoplasmic reticulum

FAD Flavine adenine dinucleotide

FGAR Formyl glycinamide ribonucleotide

G Guanine

GAR Glycinamide ribonucleotide transformylase

HB haemoglobin

HcG Human chorionic gonadotrophins

HCV Hepatitis C Virus

HCC Hepatocellular carcinomaHDL High density lipoprotein

Kb Kilo base **KDa** Kilo Dalton.

LDLr Lipoprotein receptor.

LDs Lipid drops

LDLR Lipoprotein receptor

MAT Methionine adenosyl transferase

MeTHF Methyl tetrahydrofolate

Mol Mole

MS Methionine synthase

MSAFB Maternal alpha-feto protein

MT Methyl transferase

MTHF Methylene tetrahydrofolate

MTHFR Methylene tetrahydrofolate reductase

MTRR Methionine synthase reductase

mRNA Messenger RNA

NADP Nicotinamide adenine dinucleotide phosphate

NAFLD Non- alcoholic fatty liver disease

nM Nano mole

NRC National research centre
NTD Neural tube defect.
NTRs Non –translated regions

O.D Optical density
ORF Open reading frame

OR Odds ratio

PCR Polymerase chain reaction

Pte Glu Pteroyl glutamic acid = folic acid

P-value Significance value

PEG-IFN α Pegylated interferon alfa

RFLP Restriction fragment length polymorphism **PPAR**α Peroxisome proliferator-activated receptor

PKR Protein kinase function

RNA Ribo nucleic acid

SAH S-adenosyl homocysteine SAM S-adenosyl methionine

SHMT Serine hydroxyl methyl transferase
SVR Sustained virological response
SNPs Single nucleotide polymorphisms

ssRNA Sense single-stranded

SREBP-1C Sterol regulatory element binding protein -1c

T Thiamine TG Triglyceride

TEMED N,N,N,N-Tetramethylethylene diamine.

THF Tetrahydrofolate

vLDL Very low density lipoprotein

X² Chi-square

CONTENTS

IN	TRODUCTION
RE	EVIEW OF LITERATURE
1.	General introduction of viral hepatitis C
	a. Hepatitis C epidemiology
	b. Natural history of HCV infection
	c. Molecular biology of HCV
	1. HCV classification and genotype distribution
	2. HCV genome and viral classification
	3. The HCV life cycle
2.	HCV releated hepatic steatosis
	a. Viral steatosis in chronic hepatitis C
	b. Steatosis of other causes occurring in hepatitis C
	c. Steatosis as cofactor of liver fibrosis progression
3.	
	a. Homocystein metabolism.
	b. Folate-related homocysteine metabolism
	c. Disturbed homocysteine remethylation
4.	The MTHFR gene
5.	MTHFR varients
6.	Common mutations in the MTHFR gene
7.	Frequencies of C677T allele among healthy individuals.
	a. Prevalence by geographic and racial/ethnic group
	b. Prevalence by sex
	c. Prevalence by age
8.	Effect of common polymorphism on the properties of
	human methylenetetrahydrofolate reductase
9.	The mainifestation of sever MTHFR deficiency
10	. MTHFR enzyme deficiency and hyperhomocystei- nemia
	as acause of liver steatosis
M.	ATRIALS AND METHODS
RE	ESULTS
1.	PCR Amplification of exons (4) of MTHFR gene
	a. DNA extraction from whole blood samples
	b. Optimization of PCR of exons (4)
	c. Polymerase Chaine Reaction amplification

	Genotype determination of human MTHFR gene at
	nucleotide 677
	a. Restriction endonuclease digestion by RFLP
]	b. Mutational analysis at nucleotide 677 in exon (4)
3. <i>1</i>	Analysis of the genotype pattern of chronic HCV
1	patients
8	a. Analysis of the genotype pattern of HCV positive
	patients who have steatosis at nucleotide 677 in exon
	(4)
]	b. Analysis of the genotype pattern of HCV positive
	patients who do not have steatosis at nucleotide 677 in
	exon (4)
	c. Analysis of the genotype pattern of controls
4. \$	Statistical analysis
á	a. Allele frequency at position 677 of exon (4) of human
	MTHFR gene between chronic HCV patients who have
	steatosis and controls
]	b. Allele frequency at position 677 of exon (4) of human
	MTHFR gene between chronic HCV patients who have
	steatosis and chronic HCV patients who do not have
	steatosis
DIS	CUSSION
	MMARY AND CONCLUSION
REI	FERENCESS
	ABIC SUMMARY

LIST OF TABLES

Title	page
Preparation of HCVcAg standard	52
Genotype pattern of HCV positive patients	62
Construe nottern of controls	63
Genotype pattern of controls.	03
Genotype frequency distribution of MTHFR 677 in both cases and controls	67
Allele frequency of 677 C→T among patients who have	07
steatosis and controls	71
Allele frequency of 677 C→T among patients who have	
steatosis and patients do not have steatosis	72
The relation between MTHFR 677C→T genotypes	
among chronic HCV patients who have steatosis and	
controls and risk of steatosis.	74
The relation between MTHFR 677C→T genotypes	
among chronic HCV patients who have steatosis and	
chronic HCV patients who do not have and risk of	
steatosis.	74
The demographic features of the studied participants and	
relation with the stage of steatosis	75
Relation between the laboratory results and the degree of	
steatosis	77
Histopathology results of the studied participants	78
Relation between MTHFR 677C→T Genotype and	
degree of steatosis using liver biopsy	79
Relation between HCV core antigen concentraion and	
degree of steatosis using HCV core antigen ELISA	80
Relation between HCV core antigen concentraion and	_
steatosis using HCV core antigen ELISA	80

LIST OF FIGURES

No.	Title	page
1.	Prevalence of HCV infection	4
2.	The natural history of HCV infection	7
3.	HCV genotypes and subtypes geographic distribution	8
4.	HCV genome and the viral proteins and their protein functions.	9
5.	Schematic representation of the HCV life cycle	12
6.	Lipid droplets in the early stage of virion assembly	14
7.	Cellular lipid metabolism altered by HCV infection	15
8.	Folic acid structure and its derivatives	27
9.	Simplified folate metabolism indicating its one-carbon donors and acceptors involved in methyl-group biogenesis, thymidylate synthesis and purine synthesis	28
10.	Extended folate metabolism, including compartmentation	30
11.	Function of methylenetetrahydrofolate reductase	32
12.	Metabolic pathway of MTHFR	34
13.	Human MTHFR Gene is on chromosome (1)	34
14.	Proposed mechanism for FAD dissociation	39
15.	Are presentitive figure for genotyping of the patients	45
16.	Genomic DNA extracted	56
17.	PCR amplification of Exon (4) of MTHFR gene	58

18.	Agarose gel electrophoresis of digested PCR product of exon (4) of MTHFR gene	60
19.	Genotype frequencies of human MTHFR gene at nucleotide 677 among chronic HCV patients who have steatosis.	65
20.	Genotype frequencies of human MTHFR gene at nucleotide 677 among chronic hcv patients who do not have steatosis.	66
21.	Genotype frequencies of human MTHFR gene at nucleotide 677 among controls	67
22.	Allele frequency at nucleotide 677 of (87) HCV patients who have steatosis and 112 controls	69
23.	Allele frequency at nucleotide 677 of (87) patients have steatosis and (24) patients do not have steatosis controls.	70

INTRODUCTION

Chronic infection with the hepatitis C virus (HCV) is a leading cause of global morbidity and mortality (McGowan, Monis *et al.*, 2013).

Hepatic steatosis refers to excessive fat accumulation in the liver, which is very common in the general population and also in patients infected with hepatitis C virus (HCV) and contributes to the chronic hepatitis and progressive hepatic injury that can lead to end-stage liver disease and hepatocellular carcinoma (Dev *et al.*, 2004 and National Center for HIV/AIDS 2006) This is more frequently in patients infected by genotype 3 (Mihm *et al.*, 1997and Patton *et al.*, 2004). HCV is responsible for approximately 50 % prevalence of steatosis among patients undergoing a liver biopsy (Fiore *et al.*, 1996 and Patton, 2004).

Both host and viral factors have been demonstrated to play an important role in the development of steatosis. Patients infected with HCV genotype 3 have steatosis that correlates with serum HCV RNA levels, resolves with successful therapy and is independent of host factors (Ramalho *et al.*, 2013).

Genotype 3-infected patients have steatosis that is more frequent and severe than genotype 1-infected patients (Hezode et *al.*, 2004). Despite these findings, not all patients with genotype 3 infection have steatosis. These observations support a 2-pathway model of steatosis formation: one involving viral factors present in most genotype 3 isolates and absent or reduced in other genotypes and another relying on manipulation