Intra-abdominal pressure changes following incisional hernia repair with heavyweight versus lightweight meshes

Thesis

Submitted for partial fulfillment of M. D. degree in general surgery

By

EMAD AZIZ ELDIEN HABIB NACHLA MBBCH M.Sc

Under supervision of

PROF. DR. ABDEL-MOTY HUSSEIN

Professor of General Surgery Faculty of Medicine Cairo University

PROF. DR. MOHAMAD ESSAM ELKOUSY

Professor of General Surgery Faculty of Medicine Cairo University

PROF. DR. MOHAMAD AMRO ABDEL-FATAH MATAR

Professor of Anesthesia Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2012

<u>Acknowledgement</u>

I wish to express my sincere gratitude, deep thanks and appreciation to **Prof. Dr. Abdel-Moty Hussein,** Professor of General surgery, faculty of medicine, Cairo University for his constant encouragement, diligent advice and guidance as well as for his supervision and infinite patience in following up this work in all its stages.

A special debt of gratitude is owed to **Prof. Dr. Mohamad Essam EL-Kousy**, professor of general surgery, faculty of medicine, Cairo University whose extensive help, guidance and supervision could not be measured in acknowledgement, to whom I can not find adequate words.

I feel especially indebted and extremely grateful to **Prof. DR. Mohmad Amro Abdel-Fatah Matar,** Professor of Anesthesia, faculty of medicine, Cairo University for his continuous encouragement and helpful suggestions during the course of this work.

Finally thanks are extended to all those who participated in one way or another in making this work possible.

Abstract

This study was performed to assess and compare the effect of different types of meshes (lightweight and heavyweight) on intra abdominal pressure and ventilatory pressures. Sixty cases with incisional hernia divided into two groups (lightweight versus heavyweight) were studied in the period between March 2006 to October 2011. Intracystic pressure was measured as an indicator for intra abdominal pressure. It was concluded that there was no intraoperative or early post operative difference as regard increased intra abdominal pressure between the two groups.

Keyword: Incisional Hernia- Abdominal Compartment Syndrome - incisional hernia repair- *HWM*

List of contents

•	Introduction and aim of the work	1
•	Incisional hernia	
	Introduction	3
	Pathogenesis of incisional hernia	5
	Clinical presentation and diagnosis	g
	Classification of incisional abdominal wall hernias	10
	Type of incisional hernias repair	19
	Non prosthetic repairs	19
	Prosthetic repairs	20
	Onlay (overlay) technique	21
	Inlay (bridging) technique	23
	Preperitoneal (sublay) technique	24
	Components' separation technique	26
	Laparoscopic incisional hernias repair	28
•	Surgical mesh	
	Introduction	30
	History of mesh repair	30
	Classification of biomaterials used for hernia surgery	31
	Surgical mesh and technology	32
	Integration into the abdominal wall: biocompatibility and foreign	gn
	body reaction	36
	Physiological Reconstruction	39
	Strength Requirements	39

	Abdominal Wall Compliance	43
	Mechanical Testing for mesh Burst Strength	51
	Mechanical Testing for mesh Stiffness	53
	Mesh shrinking	55
	Different mesh biomaterials and related complications	61
•	intraabdominal pressure	
	Introduction & Incidence	75
	Recognition of the abdominal compartment syndrome	75
	Normal intraabdominal pressure and Etiology of	
	intraabdominal hypertension	79
	Classification of IAH	80
	High risk groups and risk factors	80
	Diagnosis of IAP	81
	Clinical and radiological examination	82
	Measurement of IAP	85
	Measurement of IAP via a transurethral catheter	86
	Measurement of IAP via the Stomach	92
	Intraabdominal pressure monitoring techniques	98
	Measurement of IAP via Rectal pressure	101
•	Pathophysiology	106
	Intra-abdominal pressure and associated hemodynamic	
	monitoring errors	106
	Pulmonary impact of intra-abdominal hypertension	110
	Impact of IAH on renal function	114

Intra-abdominal hypertension and Abdominal wall	116
Intra-abdominal hypertension and the gut	118
Intra-abdominal hypertension and Hepatobiliary system	121
Intra-abdominal hypertension and Ophthalmic changes	121
Intra-abdominal hypertension and Lower Limb Effects	122
Intra-abdominal hypertension and Nervous system	122
Intra abdominal hypertension and MODS	125
Patients and Methods	
Results	133
Discussion and conclusions	151
Summary	155
References	157
Appendix	

List of Figures

Figure	Title	
number		
1	A-Upper midline incision (case No. 15 group B).	4
	B-lower midline incisional hernia (case No.12 group	
	A).	
2	Classification of midline incisional hernias	12
3	Classification of lateral incisional hernias	13
4A	Definition of the width and the length of incisional	17
	hernias for single hernia defects and multiple hernia	
	defects	
4B	intra operative measurement of hernia defect (Case	17
	No. 3 group B)	
5	Herniation of large content (A)through small hernia	18
	defect(B).	
6	Positions for Placement of a prosthesis for repair of	21
	venteral abdominal wall defects.	
7	onlay placement of surgical mesh using light weight	23
	mesh (A) and heavyweight mesh (B)	
8	Position of surgical mesh in sublay technique	25
9	Different positions for the mesh in sublay technique	25
10	components separation technique	27
11	Illustration of Laplace's Law	40
12	Abdominal muscle anatomy	44
13	Main loading direction of anterior abdominal wall	45

14	Reduced abdominal curvature after repair with	46
	different type of meshes	
15	Elasticity of different mesh materials at 16 N	49
16	Principle of 3D-stereography	50
17	Mechanical Testing for mesh Burst Strength	52
18	Burst load data for HW, MW, and	52
	LW meshes after implantation.	
19	Stiffness measurements calculated for HW, MW, and	54
	LW meshes	
20	Scar plate formation in HWM and LWM.	58
21A	HWM, 90 days post implantation with fold	58
	development.	
21 B	LWM, 90days post operative implantation with fold-	58
	free incorporation.	
22 A	scar plate covering the whole HWM.	59
22 B	Localized fibrotic reaction around mesh fibers with	60
	small granuloma in LWM.	
23	Incisional hernia following mesh repair (recurrence at	62
	the mesh margin)	
24.A	CT image shows inferior vena cava is collapsed	84
24.B	CT image shows severe pancreatic ascites. Ratio of	84
	maximum anteroposterior girth to lateral abdominal	
	girth is 0.80	
24.C	Bowel walls are thickened and show increased	84
	enhancement	
25	Transducer placed within the abdominal cavity	85

26	Indirect measure of intra-abdominal pressure	89
27	A closed, needle-free intravesical pressure	91
28	Measurement of IAP via the stomach	93
29	Oesophageal balloon catheter for measuring intra	95
	abdominal pressure.	
30A	IAP- Air-pouch catheter	97
30B	Air-pouch catheter connected to integrated IAP	97
	monitor	
31	IAP using Foley manometer	100
32	Microchip transducer	102
33	Respiratory effects of IAH	113
34	The impact of neuromuscular blockade on patients	124
	with intraabdominal hypertension	
35 A	Pathophysiology of the abdominal compartment	126
	syndrome	
35 B	vicious cycle leads to MOD	127
36	Visual Analogue Scale	131
37	. Range of age between the two groups	134
38	Gender distribution in group A	135
39	Gender distribution in group B	135
40	Body mass index distribution.	136
41	patient's co-morbidities	138
42	Classification of incisional hernia in studied cases.	140
43	size of hernia defect within the studied cases	141
44	Size of mesh used	142

45	Post operative hospital stay in each group	145
46	Degree of pain between the two groups using VAS	147
47	Drain removal	149

List of Table

Table No.	Item	Page
1	European Hernia Society classification for incisional	18
	abdominal wall hernias	
2-A	Age of the studied cases	133
2-B	Age of studied groups	134
3	Gender of the patients	135
4	Body mass index	136
5	Statistical study of BMI for studied groups	137
6	Patients co-morbidities	137
7	classification of incisional hernia	139
8	Size of hernia defect within the studied cases	141
9	size of mesh used in the studied groups	142
10	Intra operative airway pressure changes in group A	143
11	Intra operative airway pressure changes in group B	143
12	Intra cystic pressure changes in group A (intra	144
	operative measurements)	
13	Intra cystic pressure changes in group B (intra	144
	operative measurements)	
14	Post operative hospital stay	145
15	Time of surgery	146
16	degree of pain	147
17	Post operative intracystic pressure.	148
18	Drain removal	149

Table of Abbreviations

Abdominal Compartment Syndrome	ACS
Abdominal Perfusion Pressure	APP
Acute Respiratory Distress Syndrome	ARDS
Central Venous Pressure	CVP
Cerebrospinal Fluid	CSF
Computerized tomography	CT
Expanded Poly-Tetra-Fluoroethylene	ePTFE
Filtration Gradient	FG
Foreign Body Reaction	FBR
Global End-Diastolic Volume	GEDV
Heavyweight Mesh	HWM
Intensive Care Unit	ICU
Interleukin-1-Receptor-Antagonist	IL-1-RA
Intra Abdominal Pressure	IAP
Intra-Abdominal Hypertension	IAH
Intra-Abdominal Pressure	IAP
Intra Cranical Pressure	ICP
Intravesical Pressure	IVP
Lactate Dehydrogenase	LDH
Lateral	L
Lightweight Mesh	LWM
Liver Function Test	LFT
Matrix MetalloProteinase	MMP
Mean Arterial Pressure	MAP
Median	M

Middleweight Mesh	MWM
Multiple Organs Dysfunction Syndrome	MODS
Newton/cm	N/ cm
Polyethylene-Terephthalat	PET
Polyglactin 910	PG 910
Polyglecaprone 25	PG 25
Polymorph Nucleocyte	PMN
Polypropylene	PP
Polyvinylidenflourid	PVDF
Positive End Expiratory Pressure	PEEP
Post Operative Day	POD
Pound per Square Inch	PSI
pound-Force per Square Inch	Ib/in²
Pulmonary Artery Occlusion ("wedge") Pressure	PAOP
Recurrences	R
Renal Function Test	RFT
Right Ventricular End-Diastolic Volume	RVEDV
Short Form-36	SF-36
Species	spp
Standard Deviation	SD
Statistical Package for Social Sciences	SPSS
Stroke Volume Variation	SVV
Systemic Inflammation Response Syndrome	SIRS
Tension	T
Tumor Necrosis Factor	TNF
Ultrasonography	US

Versus	Vs
Width	W
World Society on Abdominal Compartment	WSACS
Syndrome	

Introduction

Introduction

Incisional hernia is a complication in 11 - 20 % of patients after laparotomy and some of these complications requiring emergency surgery (Conze et al., 2005). Repair of incisional hernia is a frequent operation in surgery with recurrence rates between 14 - 50 % with traditional repair and between 0 - 10 % with mesh repair (Welty et al., 2001).

Despite the broad acceptance of meshes in hernia surgery, certain physical properties of mesh biomaterials can lead to undesirable consequences. These include infection, seroma formation, bowel obstruction, fistula, mesh migration, failure of repair or restriction of the abdominal wall elasticity (**Klinge et al., 1999**).

These complications have been the rationale to investigate the biocompatibility of meshes. As a consequence, two major mesh concepts are distinguished, the classic concept including so called heavyweight meshes and the new concept including lightweight meshes. Lightweight composite mesh is the result of incorporating an absorbable component into a reduced polypropylene mass (**Klosterhalfen et al., 2005**).

The normal pressure inside the abdomen is atmospheric and varies inversely with intrathoracic pressure during normal spontaneous ventilation (**Kron et al., 1984**). Intra-abdominal hypertension exists when intra-abdominal pressure exceeds a measured numeric parameter. This parameter has generally been set at between 12 and 25 mmHg. Abdominal