Polymorphisms in MDM2 and p53 Genes in Gliomas

Thesis

Submitted for the Partial Fulfillment of MD in Clinical and Chemical Pathology

Tresented by

Riham El Sayed Hanafy

(MBBCh, MSc, Faculty of Medicine, Cairo University)

Supervised by

Prof. Nadida Abdelhamid Gohar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Prof. Dina Farouk El Gayar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr Mohamed Shehata Abdallah

Assist. Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr Khaled Samir Anbar

Assist. Professor of Neurosurgery
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgements

First and foremost, I thank **Allah** for granting me the power, patience and health to finish this work.

I am greatly honored to express my deepest thanks, gratitude and respect to **Prof.** Nadida Gohar, for her kind guidance, advice and the example she has always set for me. It has been an honor to learn from her experience and wise counseling on the personal and professional levels.

I am deeply thankful to **Prof. Dina El Gayar**, for her great help and care. I am grateful for her valuable remarks and for the insights she has shared with me.

I would also like to thank Assist. Prof. Mohamed Shehata for his kind help and guidance.

I owe my deepest gratitude to **Assist. Prof. Khaled Anbar**, Assistant Professor of Neurosurgery, for his help and his steadfast encouragement to complete this study.

No words can express my feelings towards **Assist. Prof. Mervat Khorshied** for her help and ongoing encouragement up till the last moment of the study.

A special thank you goes to my mentor **Assist. Prof. Ahmed Mukhtar**, Assistant Professor of Anesthesia and ICU for his help in the statistical analysis of this study.

Many thanks to **Dr Mohamed El Borady**, Lecturer of Neurosurgery for his great effort and help with the patients and data collection.

Moreover, I would like to extend my appreciation to my family and friends for tolerating with me through the times of hard work.

And finally, thank you to everyone who has helped me bring this study to light.

"No one is as blind as those who have sight without vision." (Helen Keller)

To those who were to me what Anne Sullivan was to Helen Keller,

For showing me the right path,

For never giving up, and for teaching me never to give up,

And most of all,

For helping me become a better human being:

Thank you.

And,

To my family and my friends

For all that, and more

ABSTRACT

Gliomas are the most common primary tumors of the central nervous system. The molecular determinants of gliomas progression are still under investigation. p53 plays a major role in more than 50% of human cancers, among which are gliomas. In addition to this, the Murine-Double-Minute 2 (MDM2) gene was found to be amplified in about 10-15% of malignant gliomas. Genetic polymorphisms in MDM2 can modulate MDM2 expression, thereby impacting p53 tumor suppression and cause increased tumor progression. The aim of the current study is to verify the role played by each of MDM2 and p53 gene polymorphisms in glioma tumorigenesis, and the potential relation between both polymorphisms.

Genotyping of the candidate genes was performed by PCR-RFLP assay in 45 glioma patients and 50 subjects as a control group. Serum p53 level was assayed by ELISA.

The present study has shown that the genotype distributions of p53 Arg72Pro between glioma cases and control groups did not differ as well as their variant allele frequencies between cases and controls. As for MDM2 SNP309, our results support the hypothesis that there is no association between it and glioma tumorigenesis. Furthermore, there was no significant association detected between both p53 and MDM2 polymorphisms and glioma tumorigenesis.

Key words: Gliomas, p53 codon 72 polymorphism, MDM2 SNP309, PCR-RFLP

CONTENTS

	Pages
INTRODUCTION AND AIM OF THE STUDY	1
REVIEW OF LITERATURE	
Glial Tumors: An Overview	3
Molecular Aspects of Gliomas	13
• p53: The Guardian of the Genome	29
MDM2: The Centerpiece of p53 Regulation	43
SUBJECTS AND METHODS	49
RESULTS	66
DISCUSSION	76
SUMMARY AND CONCLUSION	85
REFERENCES	87
ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
1.	PCR reaction mixture	54
2.	Arrangement of blank and standards in the microwell strips	64
3.	Mean age at glioblastoma diagnosis among the three genotypes of p53	67
4.	Frequency of p53 genotypes among cases and controls	68
5.	Frequency of p53 wild and mutant genotypes among cases and controls	69
6.	Frequency of p53 genotypes among the low and high glioma grades	69
7.	Allele frequency of p53 genotypes among cases and controls	70
8.	Allele frequency of p53 genotypes among low and high grade gliomas	70
9.	Allele frequency of MDM2 SNP309 among cases and controls	75
10.	Relationship between MDM2 SNP309 and p53 mutation in glioma cases	75

LIST OF FIGURES

Figure	Title	Page
1.	MRI showing glioblastoma multiforme in the posterior aspect of the frontal lobe	8
2.	Genetic pathways leading to primary and secondary glioblastomas	14
3.	Role of INK4 and CIP/KIP families in cell cycle	16
4.	Growth factors and receptors in molecular pathogenesis of gliomas	22
5.	Role of IDH mutation in glioblastomas	26
6.	p53 structural and functional domains	30
7.	Mechanism of p53 normal ubiquitination and degradation	31
8.	p53 control of cell fate following DNA damage	32
9.	p53 associated genes and pathways involved in apoptotic cell death	34
10.	p53-MDM2 autoregulatory feedback loop and its regulation	45
11.	Frequency of glioma grades among cases	66
12.	Frequency of low and high grades among cases	67
13.	PCR-RFLP analysis of p53 codon 72 after digestion with BstUI enzyme.	68
14.	Box-whisker plot showing values of serum p53 level in the cases and the control groups	71
15.	Box-whisker plot showing values of serum p53 level in different genotypes	72

Figure	Title	Page
16.	Box-whisker plot showing values of serum p53 level in low and high glioma grades	73
17.	Frequency of MDM2 SNP309 genotypes among cases and controls	74
18.	PCR-RFLP analysis of MDM2 SNP309	74

LIST OF ABBREVIATIONS

AA Anaplastic Astrocytoma

Bid BH3-interacting death agonist

bp base pair

CBTRUS Central Brain Tumor Registry of the United States

CDKIs Cyclin-dependent Kinase Inhibitors

CDKs Cyclin-Dependent Kinases

CIP/KIP CDK interacting protein/Kinase Inhibitory Protein

CNS Central Nervous System DNA Binding Domain

EDTA Ethylenediamine Tetra-Acetic Acid EGFR Epidermal Growth Factor Receptor

EGFRvIII Epidermal Growth Factor Receptor variant III

ELISA Enzyme-Linked Immunosorbent Assay

FGF Fibroblast Growth Factor

Gadd45 Growth Arrest and DNA-Damage inducible protein 45

GBM Glioblastoma Multiforme
HDAC1 Histone Deacetylase 1
HPV Human Papilloma Virus

IAP Inhibitor of Apoptosis Proteins

IARC International Agency for Research on Cancer

IDH1 Isocitrate Dehydrogenase 1

INK4 Inhibitors of CDK4
LOH Loss of Heterozygosity

MDM2 Murine Double Minute 2 (human) mdm2 Murine Double Minute 2 (mouse)

MDR1 Multi-Drug Resistance 1

MEFsMouse Embryonic FibroblastsMRIMagnetic Resonance ImagingmRNAmessenger Ribonucleic acid

MSH6 mutS homolog 6 MW Molecular Weight

NFKB2
PCR
Polymerase Chain Reaction
PDGF
Platelet-Derived Growth Factor
PI3K
Phosphatidylinositol 3-Kinase

pRb protein of the Retinoblastoma gene

PTEN Pathway/Phosphatase and Tension Homolog
RFLP Restriction Fragment length Polymorphism

RING Really Interesting New Gene SDS Sodium Dodecyl Sulphate

SNP Single Nucleotide polymorphism

SV40² Simian Virus 40
TAE Tris-Acetate EDTA

TGF-β Transforming Growth Factor-β

TP53 Total Protein 53

WHO World Health Organization

wt p53 wild-type p53

Introduction and Aim of the Study

INTRODUCTION AND AIM OF THE STUDY

Gliomas are the most frequent and deadly primary neoplasias of the central nervous system. Different studies suggest that distinct biological subtypes characterized by different prognostic factors may occur within histologically identical grade tumors. It is therefore of interest to identify genetic markers that might allow differentiation of subtypes of malignant gliomas (*Schiebe et al.*, 2000).

The molecular determinants of gliomas' progression are still under investigation, but it has become clear that the neoplastic evolution towards malignant gliomas is a multistep process. Several molecular mechanisms have been implicated in the progression of gliomas. These alterations include mutations of negative regulatory elements - such as the p53 tumor suppressor gene - and oncogene amplification. Murine Double Minute 2 (MDM2) gene was found to be amplified in about 10–15% of malignant gliomas (*Schiebe et al., 2000*). Genetic studies have shown that the MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein (*Bond et al., 2006*). MDM2 promotes degradation of p53, facilitates its nuclear export, and it interferes with its ability to bind DNA and thereby regulate transcription (*Khatri et al., 2008*).

A Single Nucleotide Polymorphism (SNP) in the promoter region of human MDM2 (SNP309) with a base change from T to G can modulate MDM2 expression, thereby impacting p53 tumor suppression and cause increased tumor progression (*Binder*, 2007). Concerning p53, a functional single nucleotide polymorphism at codon 72 of p53 gene results in the presence of either proline (Pro) or arginine (Arg) in the amino acid sequence

of p53. The pro72 variant results in stronger transcriptional activation, but weaker induction of apoptosis than the Arg72 variant. Thus, this polymorphism has been suggested to be associated with susceptibility to various cancers, among which are gliomas (*El Hallani et al, 2009*).

The aim of this study is to investigate the interrelation between p53 Arg72Pro SNP and MDM2 SNP309 and their role in the pathogenesis of gliomas in a sample taken from the Egyptian population.

Review of Literature

Glial Tumors: An Overview