A Pharmacognostical Study of Celtis australis L. and Celtis occidentalis L. cultivated in Egypt

A Thesis Submitted by

Dalia Adel M. Al-Mahdy

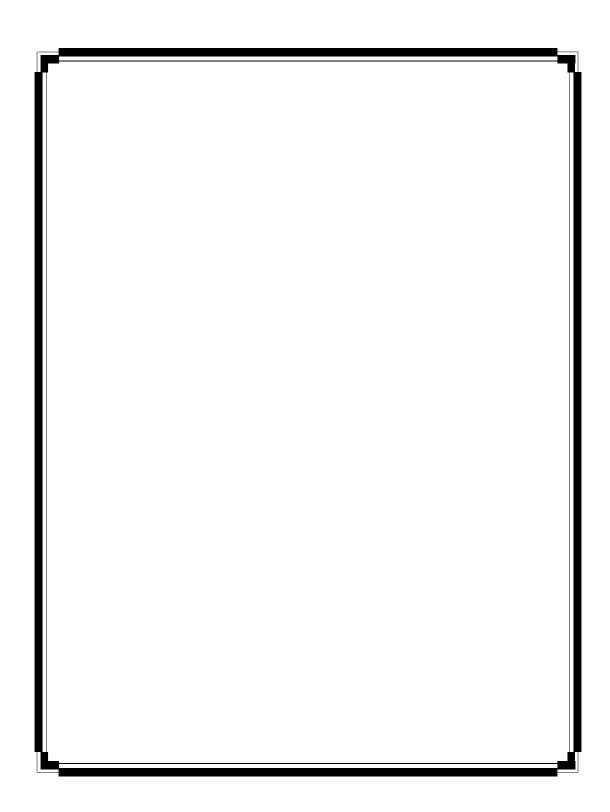
For the Degree of Doctor of Philosophy in Pharmaceutical sciences (Pharmacognosy)

Under the Supervision of

Prof. Dr. Taha S. El-Alfy

Professor of Pharmacognosy Faculty of Pharmacy Cairo University

Prof. Dr. Hamida M. El-Gohary


Professor of Pharmacognosy Faculty of Pharmacy Cairo University

Dr. Nadia M. SOKKAR

Assistant Professor of Pharmacognosy Faculty of Pharmacy Cairo University

[[

Pharmacognosy Department Faculty of Pharmacy Cairo University

بسم الله الرحمن الرحيم

وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ عَلَيْهِ وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ عَلَيْهِ تَوْكِلْتُ وَإِلَيْهِ أُنِيبَ

مدي الله العظيم (سورة مود آية ۸۸)

APPROVAL SHEET

A Pharmacognostical study of *Celtis australis* L. and *Celtis occidentalis* L. cultivated in Egypt

Approved by:

Date: 30/06/2011

Acknowledgment

A word of thanks to God, the most gracious, merciful and the source of all knowledge by whose abundant grace this work has come to fruition.

My greatest appreciation, deepest thanks and sincere gratitude are owed to **Prof. Dr. Taha S. El-Alfy**, Prof. of Pharmacognosy, Faculty of Pharmacy, Cairo University for supporting the work in this thesis, his continuous valuable supervision, constructive comments, indispensable advice, backup and kind and restful smile.

I am profoundly grateful to **Prof. Dr. Hamida M. El-Gohary**, Prof. of Pharmacognosy, Faculty of Pharmacy, Cairo University for her continuous encouragement, kind relation, backup and help during this work.

I would like to thank **Dr. Nadia M. Sokkar**, Assist. Prof. of Pharmacognosy, Faculty of Pharmacy, Cairo University for her supervision, assistance and help during the development of this work.

My deep appreciation is owed to **Prof. Dr. Hesham El-Askary**, Professor of Phytochemistry, Pharmacognosy Department, Faculty of Pharmacy, Cairo University for his help in carrying out the HPLC study in the thesis.

My sincere thanks to **Prof. Dr. Mohamed Hosny,** Professor of Phytochemistry, Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University for help in carrying out the in vitro biological evaluation.

I would like to thank **Prof. Dr. Amani A. Sleem,** Prof. of Pharmacology, National Research Center for carrying out the pharmacological and toxicological testings.

My deep appreciation and gratitude are owed to **Dr. Sahar Abd El- Tawab,** Lecturer of Plant Cytology and Genetics, Botany Department,
Faculty of Girls, Ain Shams University for carrying out the genetic profiling.

I am grateful to all members of Pharmacognosy Department, Faculty of Pharmacy, Cairo University, who gave me the benefit of their experience and encouragement.

Special thanks are owed to my mentor, **Dr. Enas Hussein**, Assistant Professor of Pharmacognosy, Faculty of Pharmacy, Cairo University, for her continuous support, encouragement, backup and kind relations from the moment I set foot in the department.

Finally my very special thanks, everlasting gratitude and sincere love are devoted to my **beloved Mother and Father** to whom words are not enough to describe their care, tenderness, encouragement, love and support. They provided me with the suitable atmosphere to work and supplied me with moral support I needed. May God bless them always and Grant them all their wishes.

Dalia Adel M. Al Mahdy

Contents

Subject	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
TAXONOMY	20
MATERIAL, APPARATUS AND TECHNIQUES	25
PART I: BOTANICAL AND GENETIC PROFILING	
BOTANICAL PROFILING	39
I- Macromorphology:	39
A- Macromorphology of Celtis australis L.:	
1- The Stem	39
2- The Bark	39
3-The Leaf	40
B- Macromorphology of Celtis occidentalis L.:	40
II- Micromorphology:	48
A- Micromorphology of Celtis australis L.:	48
1- The Stem	48
2- The Stem Bark	58
3- The Leaf	62
B- Micromorphology of Celtis occidentalis L.:	76
1- The Stem	76
2- The Stem Bark	76
3- The Leaf	76
GENETIC PROFILING	
I- DNA Fingerprinting	97
II: Seed Protein Profiling	108
PART II: PHYTOCHEMICAL INVESTIGATION	
CHAPTER I: PHYTOCHEMICAL SCREENING	114
A- Preliminary Phytochemical Screening	114
B- Extraction and Yield of Extracts	116
C- Preliminary Screening using TLC autographic method	117
CHAPTER II: INVESTIGATION OF THE LIPOIDAL CONTENT	122
A- GC analysis of the unsaponifiable matter (USM)	123
B- GC analysis of the fatty acids methyl esters (FAME)	125

Subject	Page
CHAPTER III: INVESTIGATION OF THE PHENOLIC CONTENT	128
CHAPTER IV: QUANTITATIVE ESTIMATION OF FLAVONOIDS	205
CHAPTER V: HPLC STANDARDIZATION	208
PART III: BIOLOGICAL EVALUATION	
CHAPTER I: IN VITRO BIOLOGICAL EVALUATION	220
1- Radical Scavenging Activity	220
A- 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay	230
B- Xanthine Oxidase-Induced Generation of Superoxide Radical	231
C- Nitric Oxide Radical Inhibition Assay	233
D- FeSO ₄ /H ₂ O ₂ -Stimulated Lipid Peroxidation In Rat Tissue Homogenates	235
2- Cytotoxic activity	253
CHAPTER II: IN-VIVO BIOLOGICAL EVALUATION	260
1- Determination of median lethal dose (LD ₅₀)	260
2- Antioxidant activity	261
3- Hepatoprotective activity	265
GENERAL SUMMARY	274
CONCLUSION AND RECOMMENDATIONS	295
REFERENCES	296
ARABIC SUMMARY	

List of Tables

No	Title	Page
1	Chemical structures of the active constituents isolated from different	
	Celtis species	8
2	Conditions for GLC analysis of the unsaponifiable matter (USM) and	
	the fatty acid methyl esters (FAME)	38
3	Microscopical measurements of the different organs of Celtis	0.5
	australis L. and Celtis occidentalis L. (in microns)	95
4	Components required for PCR reaction	100
	Molecular size in base pairs of amplified DNA fragments produced by	
5	primers (D-12, G-18, C-11, E-08, A-18, C-20, G-09, Z-20, M-08 and	102
	M-06) in Celtis australis L. and Celtis occidentalis L.	103
	The total number of RAPD-PCR fragments, distribution of	
6	monomorphic (common) and polymorphic bands and similarity	
	coefficients generated by ten decamer arbitary primers in the two <i>Celtis</i> species	106
	Data matrix indicating the presence and absence of bands in the seed	100
7	protein electrophoretic banding pattern for <i>Celtis</i> species	112
_	Similarity matrix of bands in the seed protein electrophoretic banding	112
8	pattern for <i>Celtis</i> species	112
-	Results of preliminary phytochemical screening of the leaves and	
9	barks of Celtis australis L. and Celtis occidentalis L.	115
10	Percentage yield of the extracts and fractions of the leaves and barks	
10	of Celtis australis L. and Celtis occidentalis L.	116
	Results of TLC autographic investigation of the ethyl acetate and <i>n</i> -	
11	butanol fractions of the leaves and barks of Celtis australis L. and	
	Celtis occidentalis L.	121
12	Yield of the USM and FAME of the leaves and barks of Celtis	
12	australis L. and Celtis occidentalis L.	122
13	Components identified by GC analysis of the USM of the leaves and	4.0.4
	barks of Celtis australis L. and Celtis occidentalis L.	124
14	Components identified by GC analysis of the FAME of the leaves and	107
	barks of Celtis australis L. and Celtis occidentalis L.	127
15	Isolated compounds from the ethyl acetate and <i>n</i> -butanol fractions of	125
16	Celtis australis L. and Celtis occidentalis L. leaves and barks	135
16	Data of Compound F	136
17	Data of Compound F ₂	142

No	Title	Page
18	Data of Compound F ₃	145
19	Data of Compound F ₄	148
20	Data of Compound F ₅	150
21	Data of Compound F ₆	156
22	Data of Compound F ₇	159
23	Data of Compound F ₈	165
24	Data of Compound F ₉	171
25	Data of Compound F ₁₀	177
26	Data of Compound F ₁₁	179
27	Data of Compound F ₁₂	188
28	Data of Compound F ₁₃	195
29	Compounds isolated from the leaves and barks <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L.	204
30	Absorbencies of the different concentrations of standard rutin	206
31	Flavonoid content in the leaves and bark of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. calculated as rutin	207
32	Peak areas of the different concentrations of standard Isovitexin (F ₉)	215
33	Peak areas of the different concentrations of standard 2 galactosylvitexin (F_{11})	216
34	Calibration curve data for the standards	216
35	Concentrations of isovitexin (F ₉) in the leaves and bark of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L.	218
36	Concentrations of 2``-galactosylvitexin (F_{11}) in the leaves and bark of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L.	218
37	Effect of the ethanolic and aqueous extracts, <i>n</i> -butanol fractions and 2``-galactosylvitexin of both <i>Celtis</i> species on DPPH % inhibition	240
38	IC ₅₀ of the ethanolic and aqueous extracts, <i>n</i> -butanol fractions and 2``-galactosylvitexin of the leaves and barks of both <i>Celtis</i> species on xanthine oxidase inhibition	242
39	Effect of the ethanolic and aqueous extracts of both <i>Celtis</i> species on nitric oxide radical inhibition	244
40	Inhibition effects of the ethanolic and aqueous extracts, <i>n</i> -butanol fractions and 2``-galactosylvitexin of the leaves and barks of both <i>Celtis</i> species on FeSO ₄ /H ₂ O ₂ -stimulated lipid peroxidation (MDA	
	production) in rat tissue homogenates in vitro	246
41	Tumor cell lines used for cytotoxic assay	255

No	Title	Page
42	Inhibition Effect of the ethanolic and aqueous extracts of the leaves and barks of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. against the	
	selected cell lines, ED ₅₀ (μg/mL)	257
43	LD ₅₀ of the ethanolic and aqueous extracts of the leaves and barks of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L.	260
44	Effect of the ethanolic and aqueous extracts and <i>n</i> -butanol fractions of the leaves and barks of both <i>Celtis</i> species on the blood glutathione level of alloxan-induced diabetic rats	263
45	Effect of the ethanolic and aqueous extracts and n -butanol fractions of the leaves and bark of both <i>Celtis</i> species on aspartate aminotransferase (AST) levels in liver damaged rats (n=6)	267
46	Effect of the ethanolic and aqueous extracts and n -butanol fractions of the leaves and bark of both <i>Celtis</i> species on alanine aminotransferase (ALT) levels in liver damaged rats (n=6)	269
47	Effect of ethanolic and aqueous extracts and <i>n</i> -butanol fractions of the leaves and bark of both <i>Celtis</i> species on alkaline phosphatase (ALP)	
	levels in liver damaged rats (n=6)	271

List of Figures

No	Figure	Page
1	Photographs of the tree and stem barks of <i>Celtis australis</i> L. and	42
	Celtis occidentalis L. Photographs of the fruits and stem branch of Celtis australis L. and	43
2	Celtis occidentalis L.	45
3	Photographs of the leaves of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L.	47
4	Micromorphology of the old stem of Celtis australis L.	53
5	Micromorphology of the young stem of Celtis australis L.	55
6	Micromorphology of the powdered stem of Celtis australis L.	57
7	Micromorphology of the stem bark of Celtis australis L.	61
8	Micromorphology of the leaf lamina of Celtis australis L.	67
9	Micromorphology of the powdered leaf lamina of Celtis australis L.	69
10	Micromorphology of the leaf petiole of Celtis australis L.	73
11	Micromorphology of the powdered petiole of Celtis australis L.	75
12	Micromorphology of the old stem of Celtis occidentalis L.	79
13	Micromorphology of the young stem of Celtis occidentalis L.	81
14	Micromorphology of the powdered stem of Celtis occidentalis L.	83
15	Micromorphology of the stem bark of Celtis occidentalis L.	85
16	Micromorphology of the leaf lamina of Celtis occidentalis L.	87
17	Micromorphology of the powdered leaf lamina of Celtis occidentalis L.	89
18	Micromorphology of the leaf petiole of Celtis occidentalis L.	91
19	Micromorphology of the powdered petiole of Celtis occidentalis L.	93
20	The RAPD electrophoretic profile of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. generated by primers (D-12, G-18, C-11 and E-08)	102
21	The RAPD electrophoretic profile of <i>Celtis occidentalis</i> L. and <i>Celtis australis</i> L. generated by primers (A-18, C-20, G-09 and Z-20)	102
22	The RAPD electrophoretic profile of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. generated by primers (M-08 and M-06)	102
No	Figure	Page

23	Photograph of polyacrylamide gel illustrating electrophoretic band profiles of seed protein extracted from <i>Celtis australis</i> L. and <i>Celtis</i>	111
24	occidentalis L.	111
24	TLC plate in solvent system S_1	119
25	TLC plate in solvent system S_2 TLC plate in solvent system S_3	119
26	TLC plate in solvent system S ₄	120
27	1	120
28	Scheme for the chromatographic fractionation of the ethyl acetate fraction of <i>Celtis australis</i> L. bark	129
29	Scheme for the chromatographic fractionation of the ethyl acetate fraction of <i>Celtis australis</i> L. leaves	130
30	Scheme for the chromatographic fractionation of the <i>n</i> -butanol fraction of <i>Celtis australis</i> L. leaves	132
31	Scheme for the chromatographic fractionation of the <i>n</i> -butanol fraction of <i>Celtis occidentalis</i> L. leaves	134
32	Negative ESI-MS spectrum of compound F ₁	139
33	¹ H-NMR spectrum of compound F ₁	140
34	¹³ C-NMR spectrum of compound F ₁ .	141
35	¹ H-NMR spectrum of compound F ₂	144
36	¹ H-NMR spectrum of compound F ₃	147
37	ESI-MS spectrum of compound F ₅	153
38	¹ H-NMR spectrum of compound F ₅	154
39	¹³ C-NMR spectrum of compound F ₅	155
40	¹ H-NMR spectrum of compound F ₆	158
41	ESI-MS spectrum of compound F ₇	162
42	¹ H-NMR spectrum of compound F ₇	163
43	¹³ C-NMR spectrum of compound F ₇	164
44	ESI-MS spectrum of compound F ₈	168
45	¹ H-NMR spectrum of compound F ₈	169
46	¹³ C-NMR spectrum of compound F ₈	170
47	ESI-MS spectrum of compound F ₉	174
48	¹ H-NMR spectrum of compound F ₉	175
No	Figure	Page

49	¹ H-NMR spectrum of compound F ₉	176
50	ESI-MS spectrum of compound F ₁₁	183
51	¹ H-NMR spectrum of compound F ₁₁	184
52	¹³ C-NMR spectrum of compound F ₁₁	185
53	HSQC spectrum of compound F ₁₁	186
54	HMBC spectrum of compound F ₁₁	187
55	ESI-MS spectrum of compound F ₁₂	192
56	¹ H-NMR spectrum of compound F ₁₂	193
57	¹³ C-NMR spectrum of compound F ₁₂	194
58	ESI-MS spectrum of compound F ₁₃	199
59	ESI-MS/MS spectrum of compound F ₁₃	200
60	¹ H-NMR spectrum of compound F ₁₃	201
61	¹³ C-NMR spectrum of compound F ₁₃	202
62	HMBC spectrum of compound F ₁₃	203
63	Calibration curve for standard Rutin	206
64	Chromatograms of the 40% aqueous methanolic extracts of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. Leaves and barks	213
65	Chromatrogram of standard Isovitexin (F ₉)	214
66	Chromatrogram of standard 2``-galactosylvitexin (F ₁₁)	214
67	Calibration curve of standard Isovitexin (F ₉)	215
68	Calibration curve of standard 2``-galactosylvitexin (F ₁₁)	216
69	Chromatrograms of the 40% aqueous methanolic extracts of <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. leaves and barks spiked with standard isovitexin and 2``-galactosylvitexin	217
70	Mechanism of lipid peroxidation	221
71	Biological damage caused by ROS in human body	223
72	Formation of stable non-radical products using antioxidant BHT	225
73	Structure of 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH*)	230
74	Lipid peroxidation steps	236
No	Figure	Page

75	Effect of the ethanolic and aqueous extracts, <i>n</i> -butanol fractions and 2``-galactosylvitexin of the leaves and barks of <i>Celtis australis</i> L. and	
	Celtis occidentalis L. on DPPH % inhibition	241
76	IC ₅₀ of the ethanolic and aqueous extracts, <i>n</i> -butanol fractions and 2``-galactosylvitexin of the leaves and barks of <i>Celtis australis</i> L. and	2.12
	Celtis occidentalis L. on xanthine oxidase inhibition	243
77	Effect of the ethanolic and aqueous extracts of the leaves and barks of	
77	Celtis australis L. and Celtis occidentalis L. on nitric oxide radical inhibition	245
	Inhibition effect of ethanolic and aqueous extracts, <i>n</i> -butanol	
	fractions and 2``-galactosylvitexin of the leaves and barks of <i>Celtis</i>	
78	australis L. and Celtis occidentalis L. on FeSO ₄ /H ₂ O ₂ -induced lipid	
	peroxidation (MDA production) in rat tissue homogenates <i>in vitro</i>	247
	Inhibition effect of the ethanolic and aqueous extracts of the leaves	
79	and barks of Celtis australis L. and Celtis occidentalis L. against the	
	selected cell lines, ED ₅₀ (μg/mL)	258
	Effect of the ethanolic and aqueous extracts and <i>n</i> -butanol fractions	
80	of the leaves and barks of Celtis australis L. and Celtis occidentalis	
	L. on the blood glutathione level of alloxan-induced diabetic rats	264
	Effect of the ethanolic and aqueous extracts and <i>n</i> -butanol fractions	
81	of the leaves and bark Celtis australis L. and Celtis occidentalis L. on	
	the aspartate amino-transferase (AST) level in liver damaged rats	268
	Effect of the ethanolic and aqueous extracts and <i>n</i> -butanol fractions	
82	of the leaves and bark Celtis australis L. and Celtis occidentalis L. on	
	the alanine amino-transferase (ALT) level in liver damaged rats	270
	Effect of the ethanolic and aqueous extracts and <i>n</i> -butanol fractions	
83	of the leaves and bark <i>Celtis australis</i> L. and <i>Celtis occidentalis</i> L. on	
	the alkaline phosphatase (ALP) level in liver damaged rats	272

List of Abbreviations