Cardiac Abnormalities in Fetuses of Diabetic Mothers

Thesis
Submitted for partial fulfillment of Master Degree in Pediatrics

By Ramy Mohamed El-Sayed

M.B.,B.CH. of Medicine and Surgery Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Nevin Mohamed Mamdouh

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Prof. Dr. Sherif Fekry Hendawy

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Omneya Ibrahim Youssef

Assistant Professorof Pediatrics Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2015

بِسْم اللَّهِ الرّحمَنِ الرّحيمِ

(...رَبِّ أُوزِعنِي أَن أَشكُرَ نِعمَتَكَ الَّتِي أَن أَشكُرَ نِعمَتَكَ الَّتِي أَنْ عَلْيَ وعَلى والدَيَّ وَأَنْ عَلَيَ وعلى والدَيَّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وأَدْخِلْنِي وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

صدق الله العظيم

النمل. اية رقم 19

Praise be to **ALLAH**, The Merciful, The Compassionate for all the gifts **I** have been offered; One of the gifts is accomplishing this research work.

Words cannot adequately assure my deepest thanks and gratitude to *Prof. Dr. Nevin Mohamed Mamdouh,* Professor of Pediatrics, Faculty of Medicine – Ain Shams University, for her continuous encouragement, constructive criticism and continuous assistance. I really have the honor to complete this work under her supervision.

I would like to express my deepest thanks and gratitude to **Prof. Dr. Sherif Fekry Hendawy**, Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University, for his unlimited help, valuable guidance, continuous encouragement and forwarding his experience to help me complete this work.

I can't forget to thank with all appreciation and gratitude **Dr. Omneya Ibrahim Youssef**, Assistant Professor of Pediatrics, Faculty of Medicine – Ain Shams University for her valuable assistance, kind supervision, her great efforts and time she has devoted to this work.

I can never forget to thank all patients who willingly participated in this study, as well as the physician and nurses, who were totally supportive during all steps of data collection.

Last but not least all thank and gratitude go to my Family, especially my Parents, my wife and my childrens, for pushing me forward in every step in my life.

Ramy Mohamed El-Sayed

List of Contents

Subject Page	No.
List of Abbreviations	i
List of Tables	ii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Pregnancy & Diabetes	4
Impact of Maternal Diabetes on Fetal Development	11
Fetal Cardiac Abnormalities of Diabetic Mother	21
Fetal Echocardiography	40
Fructosamine.	64
Patients and Methods	72
Results	78
Discussion	93
Summary	102
Conclusion	106
Recommendations	108
References	108
Arabic Summary	

List of Abbreviations

2D	Two-dimensional
3D	Three-dimensional
4D	Four-dimensional
ADA	American Diabetes Association
AO	Aorta
AVSD	Atrioventricular septal defect
BSA	Body surface area
CAT	Common arterial trunk
CM	Cardiomyopathy
DM	Diabetes mellitus
DORV	Double outlet right ventricle;
EM	Epithelio-mesenchymal
GCT	Glucose challenge test
GDM	Gestational diabetes mellitus
HAPO	Hyperglycemia and Adverse Pregnancy Outcomes
HhAlc	Glycosylated hemoglobin

List of Abbreviations

HCM.....Hypertrophic cardiomyopathy **HDL**.....High-density-lipoprotein **HLHS**.....Hypoplastic left heart syndrome **IAA**.....Interrupted aortic arch IADPSGThe International Association of the Diabetes and Pregnancy Study Groups **IDM**...... Infant of a diabetic mother **IUGR**.....Intrauterine growth restriction **IVST**.....Interventricular septal thickness LA....Left atrium LDL....Low-density-lipoprotein LGA....Large for gestational age LV....Left ventricle NAFLD......Non alcoholic fatty liver disease **NASH**.....Inflammatory steatohepatitis **NBT**.....Nitroblue tetrazolium colorimetric NTB.....Nitrotetrazolium-blue **OGTT**.....Oral glucose tolerance test

□List of Abbreviations

OR.....Odds ratio

PA.....Pulmonary artery

PVH.....Pathologic ventricular hypertrophy

PVH.....Pathologic ventricular hypertrophy

PVPI.....Pulmonary vein pulsatility index

RA.....Right atrium

RBCs.....Red blood cells

RV.....Right ventricle

SGA.....Small for gestational age

SSA.....Anti-Ro

SSB.....Anti-La

T1DMType 1 diabetes mellitus

T2DMType 2 diabetes mellitus

TBA.....Thiobarbituric acid colorimetric

TDI.....Tissue Doppler imaging

TGA.....Transposition of the great arteries

TGA.....Transposition of great arteries

MI iet	of Ahh	reviations
BEILI5L	OI ADD	reviamons

TOF&PA....Tetralogy of Fallot with pulmonary atresia

TOF.....Tetralogy of Fallot

TTTS.....Twin-twin transfusion syndrome

VSD.....Ventricular septal defect

List of Tables

Table No	. Title	Page No.
Table (1):	Perinatal mortality and neonatal infants of diabetic mothers	<u> </u>
Table (2):	Congenital anomalies associated of diabetic mothers	
Table (3):	Common indications echocardiography	
Table (4):	General recommendations echocardiography	
Table (5):	Essential components of echocardiogram	
Table (6):	Comparison between group I ar regards demographic data	
Table (7):	Comparison between group I ar regards laboratory data	
Table (8):	Comparison between group I ar regards echocardiographic data.	
Table (9):	Comparison between group Ia as regards demographic data	•
Table (10):	Comparison between group Ia as regards laboratory data	
Table (11):	Comparison between group Ia as regards echocardiographic da	
Table (12):	Comparison between group Ic as regards demographic data	
Table (13):	Comparison between group Ic as regards Hb A1c levels	• •

List of Tables (Cont.)

Table No	. Title	Page No.
Table (14):	Comparison between group I as regards echocardiographic	• •
Table (15):	Correlation between maternal age, number of birth ar laboratory and echocardiograp	nd descriptive,
Table (16):	Correlation between HbA1c levels and descriptive, leechocardiographic data	aboratory and

List of Figures

Figure No	Title	Page No.
Figure (1):	Cells from the epiblast detach a through the primitive groove to endoderm and mesoderm layers	o form the
Figure (2):	The single heart tube shows c outlining future structures	
Figure (3):	Looping of the single endocardia transforms it into a complex for structure	ourchamber
Figure (4):	One heart disease—several med several genes (Bajolle et al., 2009)	
Figure (5):	Tetralogy of Fallot. Outflow shows a orta (AO) overriding septal defect.	ventricular
Figure (6):	Trunucus arteiosus	31
Figure (7):	Fetal cardiomyopathy	33
Figure (8):	Double Outlet RV	34
Figure (9):	Hypoplastic left heart syndrome	35
Figure (10):	Ventricular Septal Defect (Rajia e	t al., 2011)36
Figure (11):	AV Septal Defect (Barboza et al.,	2002)36
Figure (12):	Illustration of the tomographic pla image the fetal cardiovascular sys	
Figure (13):	Illustrations of the anatomical co each of the designated tomograph planes used for imaging of cardiovascular system	nic imaging the fetal

List of Figures (Cont.)

Figure No	. Title Page No) .
Figure (14):	Tetralogy of Fallot.	54
Figure (15):	D-transposition of great arteries	56
Figure (16):	Hypoplastic left heart syndrome	57
Figure (17):	Hypoplastic aorta	58
Figure (18):	Truncus arteriosus	59
Figure (19):	Atrioventricular canal defect	60
Figure (20):	Double outlet right ventricle	61
Figure (21):	Dilated cardiomyopathy	62
Figure (22):	Hypertrophic cardiomyopathy	62
Figure (23):	Ventricular septal defect	63
Figure (24):	The reaction of glucose and protein to form fructosamine	65
Figure (25):	Pulmonary vein flow assessment	75
Figure (26):	Septal tissue Doppler (TDI)	76
Figure (27):	Distribution of maternal illness during pregnancy in group I	
Figure (28):	Distribution of Hb A1c values in studied groups	80
Figure (29):	Distribution of serum fructosamine values in studied groups	83
Figure (30):	Correlation between pulmonary vein pulsatility index(PVPI) and interventricular thickness (IVST) in group I.	88

List of Figures (Cont.)

Figure No	. Title	Page No.
Figure (31):	Correlation between intervent thickness (IVST) (cm) and geographic (GA)(weeks) in group I	estational age
Figure (32):	Correlation between HBA1c le pulmonary vein pulsatility incogroup I.	lex (PVPI) in
Figure (33):	Correlation between HBA1c le interventricular septal thickness in group I	ss (IVST)(cm)
Figure (34):	Correlation between HBA1c leserum fructosamine levels (µm I.	ol/L) in group
Figure (35):	Correlation between HBA1cle gestational age (GA) (weeks) in	
Figure (36):	Correlation between serum levels (µmol/L) and pulr pulsatility index (PVPI) in grou	nonary vein
Figure (37):	Correlation between serum levels (µmol/L) and gestation (weeks) in group I.	nal age (GA)
Figure (38):	Correlation between serur levels and interventricular sep (IVST) in group I	otal thickness

Introduction

The consequences of uncontrolled diabetes mellitus (DM) during pregnancy are severe to both mother and fetus. The risk of congenital malformations among infants of diabetic mothers is related to the diabetic control these mothers receive (Alien et al., 2007).

Maternal DM affects the fetal heart both structurally and functionally. In early gestation, it has a teratogenic effect causing primary cardiogenesis defects. In late gestation, it causes a unique form of hypertrophic cardiomyopathy (*Chaudhari et al.*, 2008).

Cardiomegaly is a common finding in stillborn infants of mothers with DM and may contribute to the risk of fetal death in these pregnancies (*Russell et al.*, 2008).

Given the increased risk of congenital abnormalities among infants of diabetic mothers, an appropriate biochemical and ultrasonographic screening process and a detailed evaluation of fetal cardiac structure should be offered to all pregnant women with diabetes (*Wilson et al.*, 2007).

The timing of development of the myocardial changes in the fetus of the diabetic mother has been well demonstrated by fetal echocardiography. Fetal echocardiographic investigations suggest the onset of hypertrophy occurs even before 20 weeks of gestation with documentation of increased ventricular septal thickening relative to fetuses in non diabetic pregnancies (Macklon et al., 1998).

Fructosamines are keto-amines formed by a non-enzymatic reaction between glucose and a protein (60-70% of which is glycosylated with albumin in serum), depending upon the severity and the duration of the hyperglycemia. Therefore, serum fructosamine directly reflects the dynamics of blood glucose concentration and correlates significantly with the mean plasma glucose levels from the preceding 1 to 3 weeks (*Weerasekera et al, 2000*).

Fructosamine testing has been available since the 1980s. Both fructosamine and HbAlc are used primarily as monitoring tools to help diabetics control their blood sugar, but the A1C test is much more popular and more widely accepted. However, the American Diabetes Association (ADA) recognizes both tests and says that fructosamine may be useful in situations where the A1C cannot be reliably measured (*Goldstein et al*, 2004).