Sealability and Healing Potentiality of Two Different Root-End Filling Materials

Thesis Submitted to Faculty of Dentistry,
Ain Shams University

for Partial Fulfillment of the Requirements of Doctor Degree in Endodontics

By

Mohamed Nabeel Ahmed Hashem

B.D.S, MSc, Faculty of Dentistry, Ain Shams University, 2011

Endodontic Department
Faculty of Dentistry
Ain Shams University
2017

CONTENTS

CONTENTS	I
LIST OF FIGURES	II
LIST OF TABLES	VIII
INTRODUCTION	•
REVIEW OF LITERATURE	3
AIM OF THE STUDY	54
MATERIALS AND METHODS	55
RESULTS	86
DISCUSSION	132
SUMMARY AND CONCLUSIONS	146
REFERENCES	151

LIST OF FIGURES

Figure 1	Diagram Showing Classification of the Samples for the Sealing Ability Test	57
Figure 2	Photo-radiograph Showing an Obturated Sample	58
Figure 3	Photo-radiograph Showing a Sample after Root-End Resection	60
Figure 4	Photograph Showing a Sample with Root-End Cavity	60
Figure 5	Photograph Showing a Sample after Filling with MTA	62
Figure 6	Photograph Showing Biodentine	63
Figure 7	Photograph Showing a Sample after Filling with Biodentine	63
Figure 8A	Diagram Showing the Fluid Filtration Device	67
Figure 8B	Photograph Showing the Fluid Filtration Device	67
Figure 9	Photograph Showing a Regulator Attached to Nitrogen Gas Tank	68

Figure 10	Photograph Showing Micro-syringe Fixed in Aluminum Holder	68
Figure 11	Photograph Showing a Gauge to Adjust Pressure in the Nitrogen Gas Tank	69
Figure 12	Photograph Showing an Air Bubble Introduced in the Micropipette	69
Figure 13	Diagram Showing Classification of the Animals for the Biocompatibility Study	72
Figure 14	Photograph Showing Administration of General Anesthesia	73
Figure 15	Photograph Showing Access Cavity Preparation	74
Figure 16	Photo-radiograph Showing Development of Periapical Pathosis	75
Figure 17	Photo-radiograph Showing Working Length Determination	76
Figure 18	Photo-radiograph Showing Obturated Root Canals	76
Figure 19	Photograph Showing Full Muco-Periosteal Flap with Two Releasing Incisions	77
Figure 20	Photograph Showing Exposure of the Required Apex of the Experimental Tooth	78

Figure 21	Photograph Showing Root-End Resection 3 mm above the Apex	80
Figure 22	Photograph Showing Root-End Cavity Preparation	81
Figure 23	Photo-radiograph Showing Obturated Root Canals with Root-End Filling	81
Figure 24	Line Chart Showing the Mean Values of Leakage for MTA Samples at Different Time Intervals	87
Figure 25	Line Chart Showing the Mean Values of Leakage for Biodentine Samples at Different Time Intervals	89
Figure 26	Histogram Showing the Mean Values of Leakage for the Two Tested Materials at the Three Time Intervals	91
Figure 27	Histogram Showing the Mean Scores for Radiographic Evaluation of Root-End Filling Materials at Different Evaluation Periods	95
Figure 28	A. Pre-Operative Photo-radiograph Confirming the Presence of Apical Radiolucencies. B. Post-Operative Photo- radiograph (1 Month Evaluation) Showing: Complete Healing (Score 4), Sub-group (3) "No Root-End Filling Materials"	96

Figure 29	A. Pre-Operative Photo-radiograph Confirming the Presence of Apical Radiolucencies. B. Post-Operative Photo- radiograph (1 Month Evaluation) Showing: Incomplete Healing (Score 3), Sub-group (2) "Biodentine"	97
Figure 30	A. Pre-Operative Photo-radiograph Confirming the Presence of Apical Radiolucencies. B. Post-Operative Photo- radiograph (3 Months Evaluation) Showing: Complete Healing (Score 4), Sub-group (1) "MTA"	98
Figure 31	Histogram Showing the Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (1) "MTA"	100
Figure 32	Histogram Showing the Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (2) "Biodentine"	102
Figure 33	Histogram Showing the Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (3) "No Root-End Filling Material"	104
Figure 34	Histogram Showing the Mean Inflammatory Scores of the Three Sub-groups at the Two Evaluation Periods	108

Figure 35	Histogram Showing the Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (1) "MTA"	110
Figure 36	Histogram Showing the Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (2) "Biodentine"	112
Figure 37	Histogram Showing the Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (3) "No Root-End Filling"	114
Figure 38	Histogram Showing the Mean Mineralization Scores of the Three Sub-groups at the Two Evaluation Periods	117
Figure 39	Histogram Showing the Effect of Time Intervals on the Mean Mineralization Score of Sub-group (1) "MTA"	119
Figure 40	Histogram Showing the Effect of Time Intervals on the Mean Mineralization Score of Sub-group (2) "Biodentine"	121
Figure 41	Histogram Showing the Effect of Time Intervals on the Mean Mineralization Score of Sub-group (3) "No Root-End Filling"	123
	Photomicrograph Showing Dense Inflammatory Cells Infiltration, Numerous	
Figure 42	Dilated Blood Vessels and Edema Spaces (Score 3). Group A. Sub-group (1) "MTA". (X400)	124

	Photomicrograph Showing Mild Inflammatory	
Figure 43	Cells Infiltration (Score 1), Group B, Subgroup (1) "MTA", (X400)	125
Figure 44	Photomicrograph Showing No Inflammatory Cells Infiltration around MTA in Periapical Area (Yellow Arrow). Mineralized Tissue Formed on the Surface of MTA (Blue Arrow), Group B, Sub-group (1) "MTA", (X400)	126
Figure 45	Photomicrograph Showing Moderate Inflammatory Cells Infiltration, (Score 2), Group A, Sub-group (2) "Biodentine", (X400)	127
Figure 46	Photomicrograph Showing Newly Deposited Hard Tissue, (Score 1), Group A, Sub-group (2) "Biodentine", (X400)	128
Figure 47	Photomicrograph Showing Noticeable Increase in Blood Vessels, Group B, Sub-group (2) "Biodentine", (X100)	129
Figure 48	Photomicrograph Showing No Inflammatory Cell Infiltration, Group B, Sub-group (3) "No Root-End Filling", (X200)	130
Figure 49	Photomicrograph Showing Newly Deposited Hard Tissue, (Score 2), Group B, Sub-group (3) "No Root-End Filling", (X400)	131

LIST OF TABLES

Table 1	Mean Values ±SD of Leakage for MTA Samples at Different Time Intervals	87
Table 2	Mean Values ±SD of Leakage for Biodentine Samples at Different Time Intervals	89
Table 3	Mean Values of Leakage for the Two Tested Materials at the Three Time Intervals	91
Table 4	Mean Scores for Radiographic Evaluation of Root-End Filling Materials at Different Evaluation Periods	95
Table 5	Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (1) "MTA"	100
Table 6	Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (2) "Biodentine"	102
Table 7	Effect of Time Intervals on the Mean Radiographic Healing Score of Sub-group (3) "No Root-End Filling Material"	104
Table 8	Mean Inflammatory Scores of the Three Sub-groups at the Two Evaluation Periods	108

Table 9	Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (1) "MTA"	110
Table 10	Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (2) ''Biodentine''	112
Table 11	Effect of Time Intervals on the Mean Inflammatory Score of Sub-group (3) "No Root-End Filling Material"	114
Table 12	Mean Mineralization Scores of the Three Sub-groups at the Two Evaluation Periods	117
Table 13	Effect of Time Intervals on the Mean Mineralization Score of Sub-group (1) "MTA"	119
Table 14	Effect of Time Intervals on the Mean Mineralization Score of Sub-group (2) "Biodentine"	121
Table 15	Effect of Time Intervals on the Mean Mineralization Score of Sub-group (3) "No Root-End Filling Material"	123

Introduction

The objective of root canal treatment is to eliminate microorganisms from the root canal system and to fill the intracanal space to prevent bacterial colonization that could maintain or evoke an apical pathosis. However, several factors inherent to the endodontic procedures; such as perforations, instrument breakage, calcifications and anatomic anomalies can lead to treatment failure. In some cases, conventional endodontic treatment is not sufficient to solve the problem and a surgical endodontic intervention is required.

Resection of the root-end during peri-radicular surgery results in an exposed apical dentin surface bounded by cementum with a root canal at its center. After ultrasonic root-end preparation, a root-end-filling material is usually placed to seal the root-end cavity preparation. Placement of a root-end filling after root-end resection is mandatory to develop an apical seal. Furthermore, the orthograde gutta-percha filling alone is insufficient to support bone regeneration.

An ideal root-end filling material that fulfills all the needed requirements for endodontic surgery has yet to be found. In the past, different materials such as amalgam, intermediate restorative material (IRM), Super ethoxy benzoic acid (Super- EBA), glassionomer cement and composite resin were used.

Mineral Trioxide Aggregate (MTA), a refined "Portland cement," was found to have less cytotoxic effects and better results with biocompatibility and microleakage protection, giving it more clinical success over traditional root-end filling materials. However, MTA has some drawbacks: handling is difficult, setting time is long, compressive and flexural strengths are much lower than those of dentin and it is quite costly.

Recently, BiodentineTM was introduced as a substitute to MTA. Biodentine offers similar properties to those of MTA where it is claimed to exhibit better consistency and faster setting time. The powder mainly contains tricalcium silicate, calcium carbonate, and dicalcium silicate, the principal components of MTA. The liquid consists of calcium chloride in aqueous solution with an admixture of polycarboxylate. During the setting of the cement, calcium hydroxide is formed.

Many studies tested MTA as a root-end filling material with high clinical outcomes. Concerning Biodentine as an endodontic repair material, the manufacturer claims that it has features that are superior to MTA.

Review of Literature

Success of endodontic treatment mainly relies on complete three dimensional sealing of the root canal system in order to achieve fluid tight seal. However, in certain clinical situations, resolution of periapical pathology through non-surgical approach is unsuccessful. In those situations, surgical intervention is the treatment modality of choice. The basic surgical procedure includes resection of root tip and periapical curettage.

An ideal root-end filling material would adhere and adapt to the walls of root-end preparation, prevent leakage of microorganisms and their toxins into the peri-radicular tissues, be biocompatible, be insoluble in tissue fluids and dimensionally stable and remain unaffected by the presence of moisture.

Part I: Sealing Ability of Root-End Filling Materials

Sealing ability refers to the material's ability to resist microleakage through its entire thickness.

Most endodontic failures occur as a result of leakage of irritants from pathologically involved root canals into the periradicular tissues; therefore, a repair material should provide a good seal to an otherwise unobturated root canal or improve the seal of an existing filling material. An adequate apical seal is a major factor for improving endodontic success.

Bates et al, (1) evaluated the sealing ability of MTA when used as root-end filling material. Seventy-six single-rooted teeth were used in this study. Teeth were allocated to three groups and filled with amalgam, Super-EBA and MTA. Teeth were instrumented and obturated. Root-end resection and root-end cavity preparation were performed in each root ultrasonically and retro-filled with the tested materials. Microleakage was evaluated using the fluid filtration method. The results showed that MTA revealed excellent sealing ability comparable with Super-EBA. Microleakage in the MTA group and Super-EBA group was significantly less than microleakage in the amalgam group.

Hachmeister et al, (2) tested the sealing ability and retention characteristics of MTA when placed as an apical barrier at a thickness of 1 mm or 4 mm with and without calcium hydroxide pre-medication in an open apex model. The barriers were challenged with bacteria exposure within a leakage model and displacement forces. In the leakage study, the results showed that 100% of MTA apical barriers showed bacterial penetration compared with 20% of MTA root-end fillings used as controls. The displacement study demonstrated a statistically significant greater resistance to force with a 4 mm thickness of MTA regardless of calcium hydroxide use.

Andelin et al, (3) tested the sealing ability of MTA after resection. Forty-six single-rooted teeth were used in this study. After cleaning and shaping, twenty root canals were obturated with MTA placed as root-end filling (Group 1). Another twenty root canals were obturated with gutta-percha and sealer (Group 2). The root-ends of the samples in group 2 received MTA as a root-end filling. The roots were placed in contact with India ink for 48 hours and examined for dye leakage. The results showed that there was no discernible leakage in teeth with resected MTA or those with MTA placed as a root-end filling. They concluded that resection of set MTA does not affect its sealing ability.

Tang et al, ⁽⁴⁾ used a modified Limulus Amebocyte Lysate test for the presence of endotoxin as a tracer and compared the sealing ability of Super-EBA, IRM, amalgam and MTA. One hundred and four single-rooted teeth were used. Teeth were instrumented and obturated. Root-end resection and root-end cavity preparation were performed in each root ultrasonically and retro-filled with the tested materials. Four root-end preparations received Obtura gutta-percha without sealer and served as positive controls. Another four roots were filled with sticky wax and served as negative controls. An additional four roots were prepared as blank controls. The results showed that MTA revealed less endotoxin leakage than IRM and amalgam and leaked less than Super-EBA.