

Study of Relation between Hepatorenal Syndrome and Hepatic Encephalopathy in Cirrhotic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By Reda Abdullah Alsghair

M.B.B.Ch El Mergab University (Libya)

Supervisor

Prof. Dr. Mohamed A.M. Makhlouf

Professor of Internal Medicine and Gastroenterology Faculty of Medicine- Ain Shams University

Dr. Moataz Mohammed Sayed

Assistant Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Dr. Ahmed Ibraheem M. El-Shafie

Lecturer of Internal Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, ultimate thanks are to **ALLAH**, without his aids this work could not be done.

Words will never be able to express my deepest gratitude to all those who helped med during preparation of this study.

I gratefully acknowledge the sincere and guidance of **Prof. Dr. Mohamed A.M. Makhlouf,** Professor of Internal Medicine and Gastroenterology Faculty of Medicine-Ain Shams University for his constructive guidance, continuous support and meticulous revision of this work till he reached this picture.

My sincere appreciation and deep thanks goes to **Dr. Moataz Mohammed Sayed,** Assistant Professor of Internal Medicine Faculty of Medicine- Ain Shams University for his expert guidance, valuable direction, help, support and kind supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Ahmed Ibraheem M. El-Shafie,** Lecturer of Internal Medicine Faculty of Medicine- Ain Shams University for his support, effort, kindness, continuous encouragement and for his unlimited in putting this work in his final form.

Finally, I want to thank my family & my friends for their prayers, support, continuous encouragement and help in arrangement of this thesis.

Reda Abdullah Alsghair

Contents

Table of Contents	I
List of Abbreviations	I
List of Tables	III
List of Figures	VI
Introduction	1
Aim of the Work	4
Review of Literature	
- Chapter (1): Liver Cirrhosis	5
⊃ Introduction	5
⊃ Definition	6
⊃ Incidence	7
⇒ Pathology	7
⊃ Causes	8
⊃ Pathophysiology	11
Clinical manifestations	13
⊃ Complications of liver cirrhosis	15
⇒ Spontaneous bacterial peritonitis SBP	17
⊃ Dilutional hyponatremia	17
⇒ Diagnosis	19
⊃ Lab findings	20
⊃ Imaging	22
⊃ Treatment	23
⊃ Summary	24
Ι	

Cha	pter (2): Hepatic Encephalopathy	25
-	Introduction	25
=	Pathophysiology	29
=	The ammonia hypothesis	32
-	The astrocyte in HE	35
-	Changing face of HE	41
-	Acute liver failure	41
-	Inflammation and the brain	45
-	Clinical picture	50
-	Risk factors	50
>	Scoring systems for hepatic encephalopathy	52
-	Clinical diagnosis for HE	56
\$	Motor examination	59
\$	Differential diagnosis and evaluation	61
-	Treatment of hepatic encephalopathy	65
Cha	pter (3): Hepatorenal Syndrome	95
-	Introduction	95
=	Pathogenesis of hepatorenal syndrome in cirrhosis	.100
=	Evaluation of patients with cirrhosis and renal failure.	107
=	Biomarkers for early detection of kidney diseases	.110
=	Management of patients with hepatorenal syndrome	.127
-	Liver transplantation	.134
-	Prevention and prognosis of hepatorenal syndrome	.142
Subie	ects and Methods	145

Results	151
Discussion	176
Summary and Conclusion	191
Recommendations	195
References	197
Arabic Summary	

List of Abbreviations

Abb.	Mean
AAT	Alpha 1-antitrypsin deficiency
ACU	Area under the result curve
AKI	Acute kidney injury
ALD	Alcoholic liver disease
ALF	Acute liver failure
ALT	Alanine transferase
ANA	Antinuclear antibody
ANCA	Antinuclear cytoplasmic antibody
Anti IL-6R	Anti interleukin six receptor
APACHE	Acute physiology and chronic health
	evaluation
AST	Aspartate transferase
BCS	Budd-chiari syndrome
CCA	Cholangio carcinoma
CD_4	Cluster of differentiation four
CNTF	Cilliary neurotrophic factor
CTP	Child-turcotte-Pugh
ET-1	Endothelin-1
FAP	Familial amyloid polyneuropathy
FHVP	Free hepatic venous pressure
GABA	Gamma-amino butyric acid
HCC	Hepatocellular carcinoma
HE	Hepatic encephalopathy
ННТ	Hereditary hemorrhagic telangelictasia
HPS	Hepatopulmonary syndrome
HR	Heart rate

Abb.	Mean
HRS	Hepatorenal syndrome
HSC	Hepatic stellate cells
HVPG	Hepatic venous pressure gradient
IBD	Inflammatory bowel disease
ICU	Intensive care unit
IL-6	Interleukin six
INR	International normalized ratio
KIM-1	Human kidney injury molecule-1
MELD	Model of end stage liver disease
MHE	Minmal hepatic encephalopathy
MODS	Multiple organ dysfunction score
MPM	Mortality probability models
NAG	N-acetyl-b-D-glucosaminidase
NASH	Non-alcoholic steatohepatitis
NASH	Non-alcoholic steatohepatitis
OHE	Overt hepatic encephalopathy
PCLD	Polycystic liver disease
POPH	Portopulmonary hypertension
PSC	Primary sclerosing cholangitis
PT	Prothrombin time
ROC	Receiver operating characteristic
RTA	Road traffic accident
SAAG	Serum-ascites albumin gradient
SAPS	Simplified acute physiology score
SBP	Spontaneous bacterial peritonitis
SD	Standard deviation
SOFA	Sequential organ failure assessment

Abb.	Mean
TIPS	Trans-jugular intrahepatic porto-systemic
	shunt
TLC	Total leukocytic count
WHVP	Wedged hepatic vein pressure

List of Tables

Table	Title	Page
1	Child-Turcotte-Pugh classification of cirrhosis	18
2	West Haven Criteria for semiquantitative	18
2	grading of mental state	
3	Therapies for overt HE	19
4	Nomenclature of hepatic encephalopathy	27
5	Precipitating factors for HE	51
6	Level of Consciousness with the Glasgow	54
U	Scale	
7	West Haven classification for grading mental	54
,	status in HE	
8	Clinical Hepatic Encephalopathy Staging Scale	55
0	(CHESS)	
9	Major differential diagnoses in hepatic	63
	encephalopathy	
10	Diagnostic criteria for MHE	64
11	Precipitating causes of HE, diagnostic tests,	68
11	and treatments	
12	Evaluation and management of altered mental	70
12	status and acute overt HE in cirrhotic patients	
13	Alternative causes of altered mental status to	71
13	be considered in patients with suspected HE	
14	Goals for the treatment of overt hepatic	90
14	encephalopathy	
15	New Diagnostic Criteria of Hepatorenal	96
	Syndrome in Cirrhosis	
16	Demographic data of non HRS and HBS	152

Table	Title	Page
17	Comparison between HRS and non HRS in	154
17	grading of hepatic encephalopathy	
18	Precipitating factor of hepatic encephalopathy	155
19	Comparison between vital data in HRS and non HRS	156
20	Comparison between mean electrolyte and renal function tests	158
21	Comparison between liver enzymes and function in HRS and non HRS	162
22	Comparison between TLC in HRS and non HRS	163
23	Comparison between platelets in HRS and non HRS	164
24	Comparison between S. ammonia in HRS and non HRS	165
25	Statistical comparison between creatinine & NAG 12 & 48 hours for patient of HRS and non HRS	166
26	Statistical comparison between serum creatinine at 12 and 48 hours for patient of HRS and non HRS	168
27	Statistical comparison between serum urea at 12 and 48 hours for patient of non HRS and HRS	169
28	Statistical comparison between creainine & NAG at 12 and 48 hours for HRS and non HRS	170

Table	Title	Page
29	Statistical comparison between urea and NAG at 12 and 48 hours for HRS and non HRS	170
30	Statistical comparison between urinary NAG at 12 and 48 hours for patient of HRS and non HRS	171
31	Statistical comparison between urea, creatinine, NAG at 12 and 48 hours for HRS and non HRS	172
32	Statistical correlation between urinary NAG 12 & 48 hours for HRS	173
33	Correlation between urinary NAG 12 hours and urea, creatinine level in 12 hours	173
34	Correlation between urinary NAG 48 hours and urea, creatinine level in 48 hours	174

List of Figures

Figure	Title	Page
1	Interorgan ammonia trafficking and metabolism	31
2	Proposed Algorithm for in-patient HE	
	Management*. HE, hepatic encephalopathy; ICU,	66
	intensive care unit	
3	Peripheral arterial vasodilatation hypothesis and renal dysfunction in cirrhosis	101
4	Hyperdynamic circulation in the pathophysiology	104
	of hepatorenal syndrome	104
5	Peripheral vasodilatation hypothesis and modified	106
	peripheral vasodilatation hypothesis	100
6	Transjugular intrahepatic portosystemic shunt	133
7	Gender distribution between HRS and non HRS	152
8	Comparison between HRS and non HRS as regards	154
	persent value of hyperreflexia and hypertonia	134
9	Comparison between non HRS and HRS as regards	157
	mean value of temperature	
10	Mean vital data for patients of HRS and non HRS regarding SBP, DBP, H	158
11	Comparison between with and without HRS as	
11	regards mean values of sodium	159
12	Comparison between with and without HRS as	
	regards mean values of potassium	160
13	Comparison between with and without HRS as	161
	regards mean value of creatinine	101
14	Comparison between HRS and non HRS as regards	161
	mean value of urea	

Figure	Title	Page
15	Comparison between with and without HRS as	
	regards median value of T.bilirubin and mean value	163
	of albumin	
16	Comparison between with and without HRS as	164
	regards mean value of TLC and platelet	104
17	Comparison between with and without HRS as	165
	regards mean value of ammonia	103
18	Comparison between urea & NAG at 12 & 48	167
	hours for HRS	107
19	Comparison between creatinine & NAG at 12 & 48	167
	hours for HRS	107
20	Comparison between creatinine in HRS & non	168
	HRS at 12, 48 hours	100

Abstract

In these patients the first urine sample which taken 12 hours after admission for assessment of NAG level ranged from 40 to 200 IU/L (mean+SD= 88.7±39.9) and second urinary NAG sample which taken 48 hours after admission ranged from 41 to 198 IU/L.

Keywords:

Ascites, cirrhosis, hepatic encephalopathy, hepatorenal syndrome Urinary, medicine, biomarkers