

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

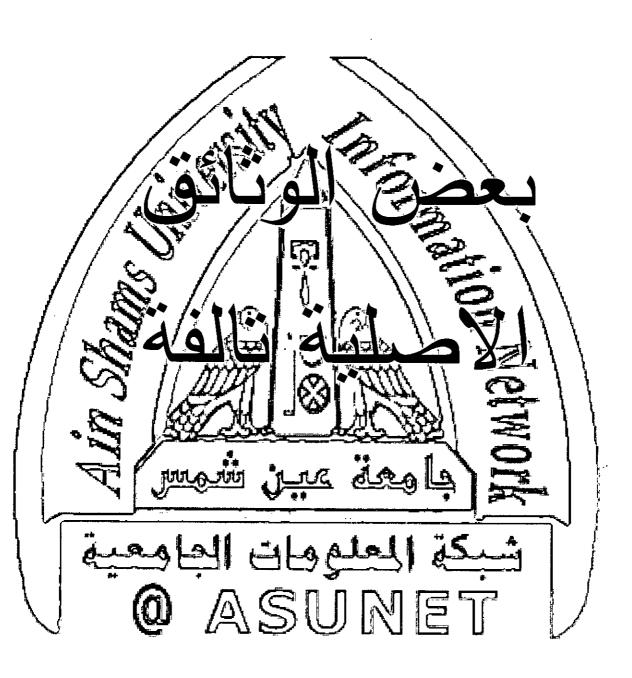
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار المعدد عن الغبار المعدد عن الغبار المعدد عن العبار المعدد عن ٢٥-١٠ ثمنوية ورطوية نسبية من ٢٠-١٠ ثمنوية ورطوية نسبية من ٢٥-١٠ ثمنوية ورطوية تمنوية من ٢٥-١٠ ثمنوية ورطوية من ٢٥-١٠ ثمنوية ورطوية تمنوية ورطوية من ٢٥-١٠ ثمنوية ورطوية تمنوية ورطوية من ٢٥-١٠ ثمنوية ورطوية تمنوية ورطوية ورطوية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

BENHA UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF GEOLOGY

GEOLOGICAL STUDIES ON THE RECENT SEDIMENTS OF LAKE NASSER (SOUTHERN PART) AS A SIGN REFLECTING ITS EVOLUTION

By

Hussein Mahmoud Hussein El-Kobtan

(Geologist in the Nile Research Institute –National Water Research Center)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of *Master of Science*(Geology)

Supervised by

Prof. Dr. Mamdouh A. Mohamed Geology Dept. Faculty of Science Menoufya University.

Prof. Dr. Ahmed Fahmy Ahmed Director of Nile Research Institute National Water Research Center

Prof. Dr. Sayed Mahfouz Ahmed Geology Dept. Faculty of Science Benha University.

2007

GP X ECT

BENHA UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF GEOLOGY

GEOLOGICAL STUDIES ON THE RECENT SEDIMENTS OF LAKE NASSER (SOUTHERN PART) AS A SIGN REFLECTING ITS EVOLUTION

By Hussein Mahmoud Hussein El-Kobtan (B.Sc.)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (Geology).

Under the supervision of:

Prof. Dr. Mamdouh A. MohamedGeology Dept. Faculty of Science
Menoufya University.

Prof. Dr. Ahmed Fahmy Ahmed A.F. A. Directory of Nile Research Institute.

The National Water Research Center.

Prof. Dr. Sayed Mahfouz Ahmed Geology Dept. Faculty of Science Benha University.

BENHA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY

GEOLOGICAL STUDIES ON THE RECENT SEDIMENTS OF LAKE NASSER (SOUTHERN PART) AS A SIGN REFLECTING ITS **EVOLUTION**

By Hussein Mahmoud Hussein El-Kobtan (B.Sc.)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (Geology).

Approved By:

Prof. Dr. Zaki Mohamed Zaghloul

Geology Dept. Faculty of Science-Mansoura University.

Prof. Dr. El Sayed Abdel Aziz Yousef

Geology Dept. Faculty of Science-Cairo University.

Prof. Dr. Sayed Mahfouz Ahmed

Geology Dept. Faculty of Science-Benha University.

Sayed

Prof. Dr. Mamdouh Abdel Maksoud Mohamed

M. O. Mchamed Geology Dept. Faculty of Science-Menoufya University.

/ /2007 Date:

ACKNOWLEDGEMENTS

Praise be to Allah, Lord of the World, by whose grace this work has been completed.

The author wishes to express his deep thanks and gratitude to **Prof. Dr.**Mamdouh Abdel Maksoud Mohamed, professor of marine - Geology

Department faculty of science - Menoufya University for his grateful help, supervision, facilities, and valuable suggestion during the progress of this work.

Sincere and deep thanks to **Prof. Dr. Sayed Mahfouz Ahmed**, professor of Geology in the Faculty of Science - Benha University, for fruitful supervision, valuable comments and continuous encouragement.

I am also indebted to **Prof. Dr. Ahmed Fahmy Ahmed**, the director of Nile Research Institute, for facilities and helps during the progress of this work.

I would like to thank **Dr. Medhat Sobhy El-Mahallawy**, researcher in the Housing and Building Research Center for his interest and useful advice.

Many thanks offered to all the staff members of Nile Research Institute who offered hand during the progress of this work.

The author wishes to express his deepest gratitude to his family especially his mother and wife for their spiritual support, patience and enthusiastic encouragement.

CONTENTS

	Page No
CHAPTER I: INTRODUCTION	1
Geological Settings	4
Previous Works	7
CHAPTER II: GEOMORPHOLOGY AND HYDRO-	•
MORPHOLOGIC FEATURES	15
1- Lateral Changes in the Bottom Configuration	17
2- Longitudinal Changes of the Hydromorphologic features	25
CHAPTER III: HYDROGRAPHIC INVESTIGATION	30
1- Technique Used for Water Measurements and analyses	30
2- Water and Air Temperature	30
3- Current Regime	35
4- pH Values	37
5- Electric Conductivity and Total Dissolved Salts	39
6- Nutrient salts	44
CHAPTER IV: THE RECENT SEDIMENTS	49
A- Suspended Matters	49
1- Technique used for sampling and analysis	49
2- The distribution of suspended matters	50
3- The factors affecting the distribution of suspended matters	50
B- Bottom Sediments	54
1- Technique used for sampling and analyses	57

2- Grain size analysis	57
3- Mechanism of deposition	69
4- Sediment types	71
5- The factors controlling sediment distribution	76
6- Loss of Ignition as a Function of Organic Matter Content	80
The distribution of organic matter content	80
7- Carbonates Contained in the Bottom Sediments	83
The distribution of carbonate content	83
8- Mineralogical Investigation	85
The Distribution of the Minerals Composing Sediments	87
CHAPTER V: SUMMARY AND CONCLUSION	93
CHAPTER VI: REFERENCES	102
ARABIC SUMMARY	

List of Figures

Fig. No.		Page No.
1	The main tributaries feeding the Nile upstream	3
2	Lake Nasser (a) A Satellite image. (b) A structural and	
	geologic map of the northern part of Lake Nasser (after	
	Kim and Sultan, 2002)	6
3	Location map showing the position of 15 selected	
	profiles along the studied locality	19
4	The bottom configuration in the studied locality	20
5 .	Longitudinal changes of width, depth and profile areas	
	after stretching SN and removing the sinuosity of the	
	studied locality	26
6	The changes in hydromorphologic features along the	
	studied locality	29
7	The temperature changes along the studied locality	,
	(recorded during the period between 13 and 26 July	
	2001)	36
8	Average current velocities along the studied locality	36
9	An interrelation between the current velocities and	
	profile area	38
10	The distribution of pH along the studied locality	38
11	The distribution of electrical conductivity along the	
	studied locality	40
12	The distribution of total dissolved salts along the studied	
	locality	40

13	The distribution of the average values of total dissolved	
	salts along the studied locality	42
14	The interrelation between total dissolved salts and	
	nutrient salts along the studied locality	42
15	The interrelation between the average total dissolved	
	salts and the hydromorphologic features along the	
	studied locality	43
16	The average distribution of the total nutrient salts along	
	the studied locality	47
17	The relative distribution of the different components	
	composing nutrient salts along the studied locality	47
18	Average suspended matter distribution along the studied	
	locality	53
19	The interrelation between the average total dissolved	
	salts and the average suspended matters along the	
	studied locality	53
20	Interrelation between the average suspended matters and	
	the hydromorphologic features along the studied locality	55
21	The interrelation between average suspended matters	
	and average current velocity along the studied locality	56
22	Histograms for the bottom sediment samples along the	
	studied locality	58
27	The cumulative curves for the collected bottom	•
	sediment samples	60
24	The average distribution of the calculated statistical	
	parameters along the studied locality	66

25	An interrelation between median diameter (MdØ) and	
	inclusive sorting (σ_I)	. 70
26	An interrelation between median diameter (MdØ) and	
	skewness (Sk _I)	70
27	The C-M diagram of the sediment samples collected	
	along the studied locality based on the explanation	
	proposed by Passega and Byramjee (1962)	72
28	An end member triangle for classifying sediment types	
	on the bases of sand, silt, clay ratio using the diagram	
	proposed by Selley, 1976	74
29	The average distribution of the different components	
	composing sediments along the studied locality	75
30	An interrelation between the average mean size (MzØ)	
	and the average total dissolved salts along the studied	
	locality	77
31	An interrelation between the average mean size (MzØ)	
	and the average current velocity near bottom along the	
	studied locality	77
32	Interrelation between the average mean size (MzØ) and	
	the hydromorphologic features along the studied locality	79
33	The distribution of L.O.I (organic matter) along the	
	studied locality	82
34	An interrelation between L.O.I (organic matter) and the	
	mean size MzØ along the studied locality	82
35	The average distribution of carbonate contents of the	
	sediments along the studied locality	84