

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

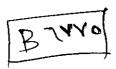
قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة



بالرسالة صفحات لم ترد بالإصل

UTILIZATION OF THE VITAL ENERGY (BIOGAS) FOR DRYING SOME CROPS

BY ABD EL- RAHMAN ABD EL-RAOUF ABD EL- RAHMAN

B. Sc. (Agric. Mech.) Ain Shams University, 1987M. Sc. (Agric. Eng.) Zagazig University, 1996

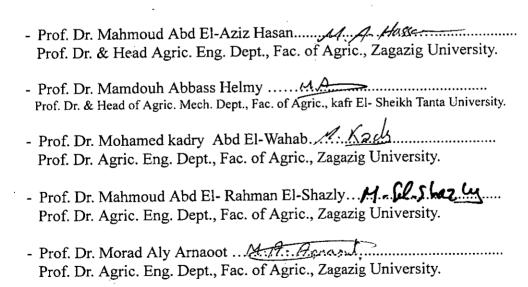
A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

In
Agricultural Science
(Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Zagazig University

err

m2573-14


Approval Sheet

UTILIZATION OF THE VITAL ENERGY (BIOGAS) FOR DRYING SOME CROPS

BY ABD EL-RAHMAN ABD EL-RAOUF ABD EL-RAHMAN

B. Sc. (Agric. Mech.) Ain Shams University, 1987M. Sc. (Agric. Eng.) Zagazig University, 1996

This thesis for Ph. D. degree has been. approved by:

Date of examination: 11/2/2002.

m 22/5-18-14

Acknowledgment

I am deeply grateful to Prof. Dr. Mahmoud Abd El-Aziz Hassn, Professor of Agricultural Engineering, Head of Agriculture of Engineering, Zagazig University for his guidance and continuous encouragement at every stage of the present work.

I gratefully acknowledge the guidance of Prof. Dr. Mahmoud El-Shazly Professor of Agricultural Engineering, Zagazeg University for his assistance and cooperation during the construction of the experiment set up.

The writer is deeply grateful to Prof. Dr. Mohamed kadry Abd El-Wahaab, Professor of Agricultural Engineering, Zagazeg university for his guidance and continuous encouragement and new ideas at through stages of industry the dryer.

Also, the writer wishes to express his thanks and gratitude to Prof. Dr. Ahmed F. El-Sahrigi Professor of Agricultural Engineering, Ain Shams University for supplying all the necessary equipment for the research and for his excellent guidance during the research. The writer also expresses his gratitude to Prof. Dr. Hossam Fahmy Director of Survey Institute for his continuous assistance.

The writer is deeply grateful to Prof. Dr. Samir Ahmed El-Shimy, Professor of Land and Water, Head of Center of Recycling Residual of Agriculture, Agricultural Research Center for his guidance, continuous encouragement and assistance by providing of all facilities and all staff in the center.

Special thanks to Eng. Abd El-Mohseen Sharaf El-Din and all staff in Starch & Glocoz Company and all staff in the Agric. Eng. Res. Institute spacial staff workshop of Agric. Eng. Res. Institute

3-1 MATERIALS	48
3-1-1 Drier prototype	48
3-1-1-1 Main part of dryer	48
3-1-1-2 Power and transmission	50
3-1-1-3 Agitator	50
3-1-1-4 Exhaust chamber	52
3-1-1-5 Suction fan	53
3-1-1-6 Air fan	54
3-1-1-7 Feeding grain tank	55
3-1-1-8 Fire chamber	56
3-1-1-9 Neck dryer	58
3-1-1-10 Source of gas	58
3-1-1-11 Frame of model	59
3-1-1-12 Gates	60
3-1-1-13 Varieties of crops	61
3-1-1-14 Storage of grain tank	61
3-1-1-15 Pulleys	61
3 -1-1-16 MEASURING DEVICE	62
3-1-1-16-1 Wind tunnel of Grain	62
3-1-1-16-2 Moisture Content Meter of Grain	63
3-1-1-16-3 Scale of Mass (Balances)	64
3-1-1-16-3-1 Electronic balance	64
3-1-1-16-3-2 Spring balance	64
3-1-1-16-4 Measuring ratio of cracked grain of percentage	64
3-1-1-16-5 Anemometer instrument	65
3-1-1-6-6 Temperature and humidity of air instrument	65
3-1-1-16-7 Digital instrument for measuring coefficient of friction.	66
3-1-1-16-8 Plastic goat and plastic bags	66
3-1-1-16-9 Digital dial caliper	67

3-1-1-16-10 Speed measure device (digital photo contact/tachometer)	67
•	
3-1-1-16-11 Grain counter	68
3-1-1-16-12 Grain hardness test	68
3-1-1-16-13 Specification and characteristics of grains and gas	69
3-1-1-16-13-1 Physical and mechanical properties of grains	69
3-1-1-16-13-2 Specification of butane gas (Botagas) and methane gas	69
(Biogas)	
3-2- METHODS	70
3-2-1 Electricity consumption and fan operation time	70 .
3-2-2 The tests to evaluate grain quality	70
IV- RESULTS AND DISCUSSION	74
4-1 Drying time	75
4-2-Quantity of grains in batch	75
4-3 Air flow rate	78
4-4 Air flow rate temperature	80
4-5 Wet air removed rate	86
4-6 Agitator rotation speed	88
4-7 Initial moisture content	88
4-8 Rate of gas	91
4-9 Kind of gas	91
V – SUMMARY AND CONCLUSION	94
VI- REFERNCES	99
VII- APPENDIX	109
VIII – ARABIC SUMMARY	

>

LIST OF TABLES

Table No.		Page			
2-1	2-1 Potential gas production from different feed stocks.				
2-2	2-2 Energy content of various fuels (Lpp et. al., 1978).				
2-3	Moisture content during harvest and for safe storage, (wb).	23			
2-4 Maximum recommended moisture contents of selected clean,					
1	sound grains for storage with aeration in North Dakota.				
2-5	Daily energy requirements for pumping manure slurries into				
	digesters.	38			
2-6	Cost of digesters in several countries.	43			
2-7	2-7 Static coefficient of friction for grain, (Brubaker and pos 1965).				
2-8	2-8 Friction angles for seed on steel surface (Chun, 1982).				
2-9	Obtained results for the average values of the friction coefficient				
	for several materials over metallic surface (Klenen et al., 1985)	46			
2-10	Angle of repose of grain (Chakraverty, 1987)	46			
2-11	Approximate allowable storage time (days) for cereal grains.	47			
3-1	3-1 Physical and mechanical properties of grains				
3-2	Spesification of butan gas (Botagas) and methane gas (Biogas).	69			
4-1	Effect of time drying on moisture content, mass of corn grains				
	and rigidity.	109			
4-2	Effect of quantity of grains in batch on moisture content, mass				
İ	of corn grains, rigidity at initial moisture content 25 %.	109			
4-3	Effect of drying time on moisture content, mass of corn grains				
	and rigidity.	109			
4-4	Effect of quantity of airflow rate on moisture content, mass of				
	corn grains and rigidity.	110			
4-5	Effect of wet air removed rate on moisture content, mass of corn				
	grains and rigidity.	110			
4-6	Including effect of quantity of grains in batch on moisture				
	content, mass of corn grains and rigidity at 0.11 m/s (6 rpm).	110			

4-7	Effect of quantity of grains rate on moisture content, mass of	
	corn grains and rigidity at 0.16 m/s(9 rpm).	111
4-8	Effect of quantity of grains in batch on moisture content, mass	
	of corn grains and rigidity at 0.21 m/s (12 rpm).	111
4-9	Effect of speed of rotary on moisture content, mass of corn	
	grains and rigidity.	111
4-10	Effect of temperature and relative humidity air drying on	
	temperature and relative humidity of wet air suction and exhaust	
	air through drying corn.	112
4-11	Effect of drying time on moisture content, mass of paddy rice	
	grains and rigidity and crack percentage.	112
4-12	Effect of quantity of crop in batch on moisture content, mass of	
	paddy rice grains rigidity and crack of percentage.	112
4-13	Effect of airflow rate on moisture content, mass of paddy rice	
	grains, rigidity and crack of percentage	112
4-14	Effect of wet air removed on moisture content, mass of paddy	
	rice grains, rigidity and crack of percentage.	113
4-15	Effect of quantity of grains in batch on moisture content of	
	paddy rice grains, rigidity and crack of percentage using biogas.	113
4-16	Effect of quantity of grains in batch on moisture content of	
	paddy rice grains, rigidity and crack of percentage using gas	113
	botagas.	
4-17	Effect of quantity of grains in batch on moisture content, mass	
	of paddy rice grains, rigidity and crack of percentage.	114
4-18	Effect of quantity of grains in batch on moisture content, mass	
	of paddy rice grains, rigidity and crack of percentage.	114
4-19	Effect of agitator speed on moisture content, mass of paddy rice	
	grains, rigidity and crack of percentage.	114
4-20	Effect of quantity of grains in batch on moisture content, mass	
	of paddy rice grains rigidity and crack of percentage at 0.21	115
	m/s. (12 rpm).	

1			
4-21	Effect of feeding rate on moisture content, mass of paddy rice		
	grains, rigidity and crack of percentage.	115	
4-22	Exposure effect of temperature and relative humidity of air		•
	drying on temperature and relative humidity both of wet air		
	suction and exhaust air.	115	
4-23	Effect of rate of gas on moisture content of paddy rice and corn.	116	
4-24	Effect of wet air removed on moisture content of paddy rice and		
	corn.	116	
4-25	Effect of quantity of airflow fan on moisture content of paddy		
	rice and corn.	116	
4-26	Quantity and cost of energy of consumption energy for dryer	117	
4-27	Quantity and cost of methane gas (Biogas) of consumption]	
	energy for dryer.	117	
4-28	Total of quantities and costs of different consumption of energy		
	for dryer.	117	
4-29	Effect of number of stages drying on moisture content and	!	
•	amount water removal from grains.	118	
4-30	Effect of agitator speed on moisture content of paddy rice and		
	corn grains.	118	
4-31	Effect quantity suction wet air on moisture content of grains	İ	
	paddy rice, corn and quantity of removal water from grains.	118	
4-32	Effect quantity of airflow on moisture content of grains paddy		
	rice, corn and quantity of removal water from grains.	118	
4-33	Effect of temperature of airflow on moisture content of grains		
	paddy rice, corn and quantity of removal water from grains.	119	
4-34	Effect of kind of gas on factors drying paddy rice grains.	119	
4-35	Effect of rate and temperature of airflow on properties of paddy		
	rice and corn grains.	119	
4-36	Initial moisture content on drying time and costs of drying	119	