A study of the response of pleurocephalic oedema of the optic disc (papilloedema due to idiopathic intracranial hypertension) to treatment

Thesis
Submitted for partial fulfillment of Master Degree in
Ophthalmology

By **Esraa Abdelhakeem Mohamed El-Sayed Diab**

M.B.B.Ch Faculty of medicine - Ain Shams University

Supervised by

Prof. Dr. Mahmoud Hamdi Ibrahim

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof. Dr. Mahmoud Ahmed Abdelhamid

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Abdelrahman Gaber Salman

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain-Shams University Cairo Egypt 2016

List of Contents

Title	Page No.
List of abbreviations	IV
List of figures	VI
List of tables	X
Introduction	1
Aim of the work	3
Review of literature	
Anatomy of the retinal nerve fiber layer and optic nerve	4
head	
Papilloedema	16
Idiopathic intracranial hypertension	25
The visual field	38
Optical coherence tomography	43
Patients and methods	52
Results	60
Discussion	78
Conclusion	91
Summary	93
References	96
Arabic summary	1

List of abbreviations

AION anterior ischaemic optic neuropathy

BCVA best corrected visual acuity
BID Bis en die (four times a day)

CE Common era

CRA central retinal artery
CRV central retinal vein
CSF cerebrospinal fluid

CSLO confocal scanning laser ophthalmoscopy

CT computerized tomography

Db decibel

EBS enlarged blind spot

GC ganglion cell

GCC ganglion cell complex GCL ganglion cell layer

HRT Heidelberg Retinal Tomograph

ICP Intracranial pressure

IIH idiopathic intracranial hypertension

IIHTT idiopathic intracranial hypertension treatment trial

IOP intraocular pressureIPL inner plexiform layerLP lumbar puncture.

LPS lumboperitoneal shunt

MD mean deviation

Mg milligram micrometer mm millimeter

MRI magnetic resonance imagingMRV magnetic resonance venography

NFL nerve fiber layer

NORDIC Neuro-Ophthalmology Research Disease Investigator Consortium

optical coherence tomography

OCT optic disc

OD Ocular Hypertension Treatment study

OHTT optic nerve head

ONH optic nerve sheath decompression
ONSD Optic Neuritis Treatment Trial

ONTT peripapillary retinal nerve fiber layer

PRNFL pattern standard deviation.

PSD per os

Quaque en die (Once a day)**QID** Pearson's correlation coefficient

r retinal ganglion cellRGC retinal nerve fiber layerRNFL retinal pigment epithelium

RPE standard deviation

SD spectral domain optical coherence tomography

SD-OCT Swedish Interactive Threshold Algorithm

SITA Scanning LASER ophthalmoscopy

SLO time domain optical coherence tomography

TR-OCT total retinal visual acuity

VA ventriculoperitoneal

VP

List of figures

Fig. No.	Title	Page NO.
Fig. (1)	Schematic representation of the course	6
	of ganglion cell axons in the retina. The	
	retinotopic origin of these nerve fibers	
	is respected throughout the visual	
	pathway.	
Fig. (2)	The speculative lamination of axons	7
	within the retina	
Fig. (3)	Exit of the human optic nerve from the	10
	eyeball.	
Fig. (4)	Schematic representation of blood	14
	supply of: (A) the optic nerve head and	
	(B) the optic nerve.	
Fig. (5)	The Paton-Holmes light microscopic	18
	study of the eyes of 39 patients who had	
	died of brain tumors.	
Fig. (6)	The Tso-Hayreh electronic microscopic	19
	studies of papilledema in rhesus	
	monkeys whose intracranial pressure	
	had been elevated by implantation of an	
	intracranial balloon.	
Fig. (7)	The mechanical and ischemic theories	20
	of optic nerve axoplasmic stasis.	
Fig. (8)	Early stages of papilledema.	21
Fig. (9)	Later stages of papilledema.	22
Fig. (10)	Chronic papilledema.	23
Fig. (11)	Grades of papilloedema according to	24
	modified Frisén scale.	
Fig. (12)	steps of optic nerve sheath	34
	decompression.	
Fig. (13)	Venous sinus stenting	36
Fig. (14)	Diagram showing the concept of	45
	Michelson interferometer	
Fig. (15)	OCT PRNFL follow up of a patient	47
	with papilloedema due to IIH.	
Fig. (16)	Coloured fundus photography of a	54

	patient with papilloedema due to IIH.	
Fig. (17)	The Nidek RS 3000 system.	55
Fig. (18)	Disc circle scanning protocol print out	55
	of the left eye of a patient with	
	papilloedema due to IIH.	
Fig. (19)	GCC thickness map print out of the	56
	right eye of a patient with papilloedema	
	due to IIH.	
Fig. (20)	The Humphrey field analyzer (HFA;	58
	Carl Zeiss Meditec, Dublin, CA, USA).	
Fig. (21)	PRNFL thickness map of one eye of a	61
	patient with pleurocephalic oedema	
	showing a within normal average	
	PRNFL thickness but an above normal	
	thickness in the nasal quadrant.	
Fig. (22)	PRNFL thickness of the right eye of a	62
	patient with papilloedema due to IIH	
	showing a within normal average	
	PRNFL thickness, however, the	
	sectorial anylysis shows a below normal	
	thickness of the superior quadrant. GCC	
	chart shows a below normal thickness	
	of the upper temporal and upper nasal	
Fig. (23)	quadrants of both inner and outer rings.	63
Fig. (23)	SLO photo of the optic disc showing	03
	asymetrical degree of disc oedema, with PRNFL thickness map.	
Fig. (24)	Data obtained on presentation from both	66
1 1g. (24)	eyes of the same patient showing a	UU
	higher PRNFL thickness in the left eye	
	compared to the right eye, but with	
	better visual field parameters.	
Fig. (25)	Progression in PRNFL thickness after 3	70
8 ·(- •)	months of follow up in the left eye of	. •
	one patient showing an increase in the	
	total PRNFL thickness The nasal	
	quadrant shows a regression in its	
	PRNFL thickness.	
Fig. (26)	PRNFL map showing a within normal	70

	average PRNFL, with a below normal thickness or the superior quadrant and above normal thickness of the inferior quadrant	
Fig. (27)	quadrant. SLO image of two eyes of the same patient after 3 months of follow up with PRNFL thickness map showing an abobe normal average PRNFL thickness.	71
Fig. (28)	Chart showing the progression in the mean PRNFL thickness in the four quadrants during the follow up period.	72
Fig. (29)	Chart showing the progression in the mean MD during the follow up period.	73
Fig. (30)	Chart showing the progression in the mean PSD during the follow up period.	73
Fig. (31)	Chart showing the progression in the mean average PRNFL thickness during the follow up period.	74
Fig. (32)	Disc circle print out of one eye showing a below normal average PRNFL thickness, with a below normal thickness of both superior and nasal quadrants.	75
Fig. (33)	GCC map of one eye at first diagnosis then during each subsequent follow ups, showing a below normal thickness of the upper temporal quadrant of the outer ring which was observed since the first follow up.	75

List of tables

Table	Title	Page No.
No.		
Table (1)	Iindividual patient data recorded at the time of presentation	60
Table (2)	Data recorded at diagnosis	64
Table (3)	Visual field defects at diagnosis and	67
	during each subsequent visit	
Table (4)	Comparison between early and late visual parameters in idiopathic intracranial hypertension patients	69

Introduction

diopathic intracranial hypertension (IIH), also known as pseudotumor cerebri, is characterized by elevated intracranial pressure (ICP) with no apparent cause (Waisbourd et al., 2011).

This condition occurs most commonly in overweight women during childbearing age. It has also been associated with other factors, such as a certain medications, anemia, and untreated obstructive sleep apnea (*Kesler et al.*, 2004).

Visual disturbances mainly transient visual obscurations, photophobia and diplopia are usually met with. Papilloedema, the ophthalmologic hallmark of IIH, is usually symmetrical between both eyes and it is rarely absent (*Waisbourd et al.*, 2011).

The disease course is often lengthy, and therapy must be guided by clinical signs, the extent of papilloedema, and the CSF opening pressure (*Salgarello et al.*, 2001).

During the past few decades several approaches have been used to analyze the papilloedema due to intracranial hypertension either functionally or morphologically. In particular, the relations between functional and morphological variables of the optic nerve have been investigated (*Salgarello et al.*, 1996).

The prominent role of automated perimetry in detecting the earliest functional losses and following up the progression of dysfunction has been stressed by different studies. Qualitative correlation between high-grade papilloedema and perimetric loss has been found by some investigators, it has been suggested that the severity of visual field loss in individual patients cannot be predicted from the severity of papilloedema (*Chan et al.*, 2009).

Optical coherence tomography is a potential tool to quantify the changes in the degree of papilloedema and to monitor the efficacy of the treatment interventions (*Jones et al.*, 2001).

It measures retinal thickness, peripapillary retinal nerve fiber layer thickness (PRNFL), and quantify optic nerve head (ONH) morphology (e.g. disc size and cup-disc ratio). Its findings are reasonably reproducible on successive measurements (*Rebolleda and Munoz-Negrete*, 2009).

Aim of the study

o observe and describe the response of pleurocephalic oedema of the optic disc to different modalities of treatment both functionally and morphologically.

Anatomy of the retinal nerve fiber layer and optic nerve head

The retinal nerve fiber layer

he normal human optic nerve is made up of 1.0-1.2 million axons of retinal ganglion cells (GCs), which converge at the optic disc (OD). These fibers make up the retinal nerve fiber layer (NFL) and lie in the inner retina, just below the internal limiting membrane (*Sigelman and Ozanics*, 1982).

The NFL contains the axons of the GCs (the so-called 'centripetal' or 'afferent' fibers), glial cells, a rich capillary bed and centrifugal (or efferent) fibers (*Bron et al.*, 1997).

The centripetal fibers (the axons of the GCs):

The axons of the GCs are arranged in arcades delineated by the processes of Muller and other glial cells. Individual afferent fibers measure from 0.6µm to 2.0µm in diameter. They contain prominent microtubules, mitochondria and smooth endoplasmic reticulum. They have a bidirectional axoplasmic flow that occurs at two rates: at the slow rate (0. 5-5 mm/day) which carries high molecular-weight proteins that are utilized for axonal growth, maintenance and repair; the fast rate (10- 2000 mm/day) caters to molecules that are involved in synaptic function. The axons remain unmyelinated until they reach the lamina cribrosa of the optic nerve (ON) (Sigelman and Ozanics, 1982).

The NFL is thickest at the nasal edge of the OD, where it measures 20-30µm. The thickness decreases from the OD to the ora serrata, where the ganglion cell layer (GCL) and the NFL blend to form a single layer. The papillomacular bundle represents the thinnest portion of the NFL around the optic disc; it is the last portion of the OD to be affected in papilloedema (*Bron et al.*, 1997).

Because axons are so numerous close to the optic nerve head (ONH) they become heaped up, especially on the nasal side, which causes an elevation (the papilla) to be formed towards the vitreal surface. Thus, the nasal aspect of the OD is the most

susceptible to changes of papilloedema because of its greater collection of nerve bundles and blood vessels (*Bron et al.*, 1997).

The centrifugal fibers:

Centrifugal fibers that originate from the central nervous system terminate in the inner plexiform layer (IPL) or in the innermost part of the inner nuclear layer. Usually they associate with amacrine cells or capillary walls, where they exert vasomotor effects (*Bron et al.*, 1997).

Topographic organization of the nerve fibers in the retina and the optic disc head:

The axons of the ganglion cells take a radial course parallel to the inner limiting membrane and converge on the optic nerve, except for those axons that arise from ganglion cells immediately temporal to the optic disc, which are the first to develop and form the center of the optic nerve. These fibers are distinguished as the papillomacular bundle. The axons originating from ganglion cells temporal to the fovea take an increasingly arcuate course to bypass this region .The superior and inferior fibers are separated at their origin by a horizontal arbitary raphe that extends from the fovea to the extreme temporal periphery of the retina. Figure (1) shows the course of the axons of the ganglion cells in the NFL of the retina (Sigelman and Ozanics, 1982).

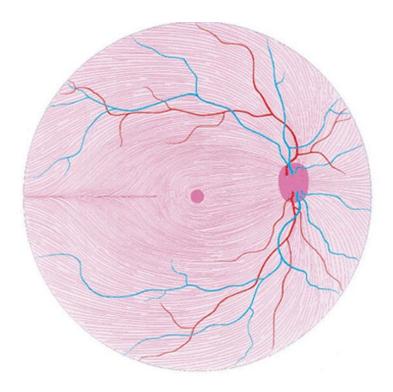


Fig. (1) Schematic representation of the course of ganglion cell axons in the retina. The retinotopic origin of these nerve fibers is respected throughout the visual pathway (Harrington and Drake, 1990).

The retinotopic organization of the nerve axons is rigidly preserved at the nerve fiber layer, just anterior to the GCL, as they reach the periphery of the nerve head. Although the configuration of nerve fibers within the retina has long been understood, the correct orientation of retinal nerve fibers in the ONH has been the subject of considerable debate. Prior to 1930, the common view was the nerve fibers from the peripheral retina entered the central portion of the ONH. It has since been established that the reverse is true as shown in figure (2). In the peripapillary retina, newly arising axons pass through the NFL to reach its internal surface. Axons arising here cross those of peripheral origin and pass at the vitreal surface of the NFL to the center of the nerve head (*Tuulonen et al.*, 1993).

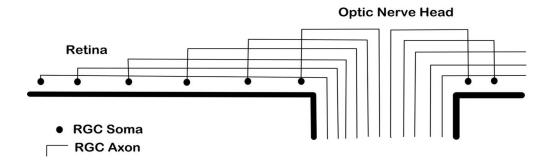


Fig. (2) The speculative lamination of axons within the retina (Carreras et al., 2014). RGC: retinal ganglion cell.

The intraocular optic nerve head (Optic papilla, Optic disc):

The intraocular portion of the optic nerve extends from its anterior surface in contact with the vitreous to a plane which is level with that of the posterior scleral surface (about 1 mm). The choroid ends abruptly here, as do all elements of the retina except its axons. These bend at a right-angle into the nerve head and pass posteriorly through the scleral canal. The nerve head exhibits three zones as shown in figure (3) but the immediately retrolaminar nerve is usually described with it as follows:

- 1. the superficial NFL, a prelaminar zone anterior to the level of Bruch's membrane (pars retinalis);
- 2. the prelaminar zone level with the choroid (pars choroidalis);
- 3. the lamina cribrosa (pars scleralis);
- 4. the retrolaminar portion Immediately behind the lamina.

The Superficial NFL:

This is covered by the inner limiting membrane of Elschnig, which is composed of astrocytes and is in continuity with the inner limiting membrane of the retina. Glial cells and interaxonal processes are relatively sparse here but increase progressively towards the retrolaminar nerve. Astrocytes make up approximately 10% of the volume of the nerve head (*Bron et al.*, 1997).

The prelaminar zone:

The prelaminar region contains bundles of axons lying within astrocytic channels. The astrocytic processes are largely circumferential. This loose glial tissue does not bind the axon bundles together as do the Muller cells of the retina and therefore fibers here are more easily separated. This may explain why the disc swells so easily in papilloedema while the adjacent retina does not. The trabeculae between the axon bundles carry capillaries, most of which are surrounded by a narrow perivascular connective tissue space. A limiting membrane formed from glial footplates surrounds this region (*Bron et al.*, 1997).

The presence of glial cells in this (as in other parts of the optic nerve) accords with its development. The optic peduncle is predominantly neuroglial before optic nerve fibers grow into it. Moreover, when the hyaloid artery (which arises from the arteria centralis) degenerates, the neuroglial cells surrounding its origin persist anteriorly as an astrocytic lamella, the central tissue meniscus of Kuhnt. This is in continuity with the inner limiting membrane at the surface of the disc and with glial tissue surrounding the adventitia of the central vessels (the intercalary tissue of Elschnig) (*Bron et al.*, 1997).

At the periphery of the prelaminar part of the optic nerve, the axons are separated from the connective tissue of the scleral canal and/or choroid by a cuff of astrocytes of varying thickness, termed the border tissue of Jacoby. It then extends forwards to intervene between prelaminar axons and the termination of the posterior retinal layers, as the intermediary tissue of Kuhnt (*Bron et al.*, 1997).

The rim of sclera at the scleral foramen is termed the border tissue of Elschnig. It is sometimes prolonged forwards, especially on the temporal side, to intervene between the peripapillary choroid and the glial, border tissue of Jacoby. It is composed of dense collagenous tissue with many glial and elastic fibers and some pigment (*Bron et al.*, 1997).