IMPLEMENTATION OF EFFICIENT PROTECTION FOR MOBILE AGENTS AGAINST MALICIOUS HOSTS

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In

COMPUTER AND INFORMATION SCIENCES

Ву

Marwa Mohamed Essam

Supervisors

Prof. Dr. Mohamed Said Abdel-Wahab Prof. Dr. Mohamed Ali El-Sharkawy

FACULTY OF COMPUTER AND INFORMATION SCIENCES
AIN-SHAMS UNIVERSITY

Acknowledgment

I would like to express my deep gratitude to the dean of my faculty, Prof. Dr. Mohamed Essam Khalifa, for his encouragement, advice and fundamental support throughout my work in this thesis.

I would also like to thank Prof. Dr. Mohamed Hashem, the head of the Information Systems department, for his useful discussions, comments and invaluable advice on mobile agents and security.

Sincere thanks go to my supervisor, Prof. Dr. Mohamed Said Abdul-Wahab, for the time and effort he devoted to me, for helping me in structuring this work, for ideas and suggestions and for great encouragement.

I am also indebted to my supervisor, Prof. Dr. Mohamed Ali El- Sharkawy for all the comments and help, for sharing his expertise and knowledge and for the great support throughout this work.

Last but not least, this thesis would not have been written if not for my family's unwavering support throughout these years. I am especially grateful for them for their continued belief in my abilities and their encouragement throughout every step of the way.

Abstract

Free-roaming mobile agents have evoked strong interest due to the enormous potential they extend to distributed systems programming. However, it is generally agreed that without the proper security for an agent against a potentially malicious executing host, the use of agent-based applications will be severely impeded. Several models have been proposed to secure free-roaming agents. One class of these models tries to detect the tampering on the agent's data using the concept of partial results encapsulation. That is to securely save the results of an agent's actions, at each platform visited, for subsequent verification when the agent returns to his point of origination.

In this thesis, we proceed to propose a new mobile agent security approach that aims to provide both data integrity and confidentiality through partial results encapsulation. The basic idea in the proposed approach is to incorporate a trusted server in the mobile agent system to discourage and detect bad behavior by malicious hosts. The trusted server will act as the controller of the mobile agent execution process. It will force each execution host to encapsulate its computational results without compromising the agent's security.

We present two different execution models for our trustedserver based approach: In the first model; named the Trusted-Entity based Agent Protection Approach (TEAPA), the agent execution process is totally controlled by the trusted server. The server is responsible of sending the mobile agents on behalf of their owners. It is also responsible of detecting the manipulation in the agent's collected results. In the second execution model; named the modified- TEAPA (M-TEAPA), the dependency on the trusted server is reduced by using it only to authenticate the visited hosts and allowing the agent's owner itself to test the collected results for tampering detection.

In the data encapsulation phase in the two proposed execution models, the agent constructs a symmetric encryption key at each visited host and uses that key to encrypt and encapsulate the obtained results. The construction of an encryption key at any host builds a chaining relation that links that key forwards to the host's successor and backwards to all the previously constructed keys.

We proved through security analysis that having the trusted server in the system and adopting the chaining relation in creating the encryption keys enabled the proposed security approach to satisfy most of the security requirements for mobile agent's data integrity protection. We also proved by experiments that the new approach outperforms the previous partial results encapsulation models in terms of the time needed for securing the results and the encapsulation size overhead.

Table of Contents

1	Intro	duction	1
	1.1 Ov	verview	2
	1.2 Se	ecurity in Mobile Agent Systems	3
	1.3 Co	ontribution of this thesis	5
	1.4 Th	nesis Organization	7
2	Backg	ground on Mobile Agents	9
	2.1 In	ntroduction	10
	2.2 E	Evolution of the mobile agent Paradigm	10
	2.3 T	erminology	15
	2.4 C	Characteristics of Mobile Agents	16
	2.5 B	Beneficial Aspects	17
	2.6 E	Existing Mobile Agent Systems	19
	2.7 A	pplications	22
3	Data :	Integrity of Mobile Agents	27
	3.1 In	ntroduction	28
	3.2 U	Inderstanding Malicious Attacks	29
	3.2.	1 The meaning of an attack	29
	3.2.2	2 The range of possible attacks	32
	3.3 D	Desirable Security Properties	37
4	Partia	al Results Encapsulation Models	40
	4.1 O	verview	41
	4.2 S	ecurity Definitions	42
	4.3 A	ssumptions and Notations	46

	4.4 Pub	licly Verifiable Chained Signature Protocol	49
	4.4.1	Model Description	50
	4.4.2	Analysis of the Model	53
	4.5 One	-time Key Generation System	54
	4.5.1	Model Description	55
	4.5.2	Analysis of the Model	57
	4.6 Pub	licly Verifiable Digital Signature with Co-Signing	59
	4.6.1	Model Description	60
	4.6.2	Analysis of the Model	63
	4.7 One-	hop Forward Two-hop Backwards Chaining	65
	4.7.1	Model Description	65
	4.7.2	Analysis of the Model	68
	4.8 Sum	mary	69
5	The Pro	posed Data Encapsulation Approach	71
	5.1 The 1	pasic idea of the proposed approach	72
	5.2 The Assumptions and Notations of the Proposed Approach		74
	5.3 The f	First execution model of the proposed approach: PA	75
	5.3.1	The model execution steps	76
	5.3.2	Security analysis of the first execution model	82
	5.4 The	second execution model: Modified-TEAPA	88
	5.4.1	Model Description	90
	5.4.2	Security analysis of the second execution model	94
	5.5 Perfo	ormance analysis	95
	5.5.1	Choice of programming language	96
	5.5.2	The Simulation System Design	98
	5.5.3	Experimental Setup	101
	5.5.4	Experiments and Results	101

	5.6 Performance/Security Tradeoffs	106
6	Conclusions	108
	6.1 Conclusions	109
	6.2 Future Work	111

References

Published Papers

List of Figures

_	intiduct		
	Figure 1.1	The Mobile Agent Paradigm	3
2	Backgrou	nd on Mobile Agents	
	Figure 2.1	Remote Procedure Call (RPC)	11
	Figure 2.2	Remote Evaluation Call (REV)	12
	Figure 2.3	Code on Demand (CoD)	12
	Figure 2.4	A mobile agent roaming a network	14
3	Data Inte	grity of Mobile Agents	
	Figure 3.1	The attacker's and the agent's abstract machines in Hohl's model.	30
	Figure 3.2	A shopping agent example (Data Block)	33
	Figure 3.3	A shopping agent example (Code Block)	34
4	Partial Re	esults Encapsulation Models	
	Figure 4.1	The encryption and the decryption processes	42
	Figure 4.2	A shopping agent's itinerary to collect offers from o_1 to o_n .	47
	Figure 4.3	The chaining relation adopted in PVCSP	50
	Figure 4.4	The chaining relation adopted in PVDS-	60

CS

5 The Proposed Data Encapsulation Approach

Figure 5.1	The set of encapsulated offers in the proposed execution model: TEAPA	76
Figure 5.2	The chain of encryption keys in TEAPA	80
Figure 5.3	The encapsulation of an offer in TEAPA at a host i where i>1.	80
Figure 5.4	The insertion attack.	85
Figure 5.5	The truncation attack.	87
Figure 5.6	Collecting offers in the second execution model: M-TEAPA	89
Figure 5.7	The encapsulation of an offer in the second execution model: M-TEAPA	92
Figure 5.8	The base Agent class in the simulation system.	99
Figure 5.9	The time required by hosts from S1 to S200 to encapsulate a 20 bytes offer.	104
Figure 5.10	The time required by host S1 to encapsulate an offer as its size increases.	105
Figure 5.11	The offer size before and after encapsulation.	106

List of Tables

4 Partial Results Encapsulation Models

	Table 4.1	The model notations of the partial results encapsulation models.	48
	Table 4.2	The cryptographic notations of the partial results encapsulation models.	48
	Table 4.3	The security features of the partial results encapsulation models	70
_		17 4 7 144 4 1	
5	The Prop	osed Data Encapsulation Approach	
5	_	The proposed approach notations	75

List of Abbreviations

COD Code On Demand

DES Data Encryption Standard algorithm

DSA Digital Signature Algorithm

M-TEAPA Modified Trusted-Entity based Agent Protection

Approach

OKGS One-time Key Generation System

OTCM One-hop forwards Two-hop backwards Chaining

Model

PKI Public Key Infrastructure

PRE Partial Results Encapsulation

PVCSP Publicly Verifiable Chained Signature Protocol

PVDS-CS Publicly Verifiable Digital Signature with Co-Signing

RASPS Random Access Stored Program plus Stack machine

REV Remote Evaluation

RPC Remote Procedure Call

RSA An encryption algorithm named for its inventors,

Ron Rivest, Adi Shamir, and Leonard Adleman

TEAPA Trusted-Entity based Agent Protection Approach

WFMS Work Flow Management System

Chapter 7

Introduction

1.1 Overview

In recent years the inter-networking and communication infrastructure has steadily increased. Today the Internet allows even the smallest company to do business on a global scale. As the density and capacity of the internet will continue to expand, the amount of available on-line information will expand as well. The issue of how to efficiently find, gather and retrieve this information has led to the research and development of systems and tools that attempt to provide a solution to this problem. These systems and tools are based on the use of mobile agents [1].

A mobile agent is an executing program, capable of migrating from host to host within an agent enabled network. The agent can suspend execution on its originator, transfer itself with code and data to another host and resume execution there (Figure 1.1). The mobile agent is firstly created on some machine, and it is dispatched to a remote host for execution. The accommodating host would provide suitable runtime environment for the piece of software, the mobile agent, to execute. The mobile agent would execute, collect host-specific information, and generate runtime states and variables ready to migrate to another host. This process continues until the mobile agent returns to the first machine that sent him with useful information gathered through his visits to other hosts.

The mobile agent migrates to the host and performs computations on the host, thereby reducing communication

costs. This is in contrast to the client/server paradigm where the clients and the server exchange information via remote procedure calls or other messaging systems. The mobile agent paradigm promises to open up exciting computing possibilities, especially with the popularity of wireless networks where bandwidth is at a premium and communication links are not always reliable. Some of the possible applications of mobile agents are in the areas of Electronic Commerce, Distributed System Management and Workflow System Management.

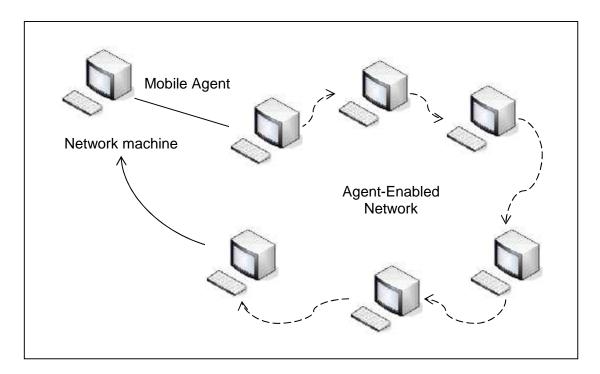


Figure 1.1 The Mobile Agent Paradigm

1.2 Security in mobile agent systems

Significant research and development into mobile agents have been conducted in recent years. Yet, because of some