APPLICATION OF HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM "HACCP" IN OLIVE OIL EXTRACTION PROCESS

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in
Agricultural Science
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

تطبيق نظام تحليل المخاطر و نقاط التحكم الحرجة "الهاسب" في عملية استخلاص زيت الزيتون

رسالة مقدمة من ولاء محمد أحمد السيد

بكالوريوس علوم زراعية (صناعات غذائية) ، جامعة عين شمس ، 2007

للحصول على

درجة الماجستير في العلوم الزراعية (علوم وتكنولوجيا الأغذية)

قسم علوم الأغذية كلية الزراعة جامعة عين شمس

Approval Sheet

APPLICATION OF HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM "HACCP" IN OLIVE OIL EXTRACTION PROCESS

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2007

Date of Examination: 8 /12 /2013

APPLICATION OF HAZARD ANALYSIS CRITICAL CONTROL POINT SYSTEM "HACCP" IN OLIVE OIL EXTRACTION PROCESS

By

WALAA MOHAMED AHMED EI-SAYED

B.Sc. Agric. Sc. (Food Technology), Ain Shams University, 2007

Under the supervision of:

Dr. Mamdouh, H.O. El-Kalyoubi

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Mohammed Mostafa M. Abd El-Razik

Assistant Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Fouad Omer Fouad Abou-Zaid

Researcher of Food Science and Technology, Plant Production Dep., Desert Research Center.

صفحة الموافقة على الرسالة

تطبيق نظام تحليل المخاطر و نقاط التحكم الحرجة "الهاسب" في عملية استخلاص زيت الزيتون

رسالة مقدمة من ولاء محمد أحمد السيد

بكالوريوس علوم زراعية (صناعات غذائية) ، جامعة عين شمس ، 2007

للحصول على درجة الماجستير فى العلوم الزراعية (علوم وتكنولوجيا الأغذية)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:
محمد شحات سالم أستاذ الصناعات الغذائية ، كلية الزراعة ، جامعة الاز هر
محمد مجدي مصطفي أستاذ علوم وتكنولوجيا الأغذية ، كلية الزراعة ، جامعة عين شمس
ممدوح حلمي عثمان القليوبي

تاريخ المناقشة: 8 /2013/12

رسالة ماجستير

اسم الطالبة: ولاء محمد أحمد السيد

عنوان الرسالة: تطبيق نظام تحليل المخاطر و نقاط التحكم الحرجة الاستخلاص زيت الزيتون الزيتون

اسم الدرجة: ماجستير في العلوم الزراعية (علوم وتكنولوجيا الأعذية)

لجنة الإشراف:

د. ممدوح حلمي عثمان القليوبي

أستاذ علوم وتكنولوجيا الأغذية المتفرغ ، قسم علوم الأغذية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. محمد مصطفي محمد عبد الرازق

أستاذ علوم وتكنولوجيا الأغذية المساعد ، قسم علوم الأغذية كلية الزراعة ، جامعة عين شمس

د. فؤاد عمر فؤاد أبوزيد

باحث الصناعات الغذائية ، قسم الإنتاج النباتي ، مركز بحوث الصحراء

تاريخ التسجيل: 2009/2/9

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ

2013/12/8

موافقة مجلس الجامعة / /2014

موافقة مجلس الكلية / /2014

ABSTRACT

Walaa Mohamed Ahmed El-Sayed: Application of Hazard Analysis Critical Control Point System "HACCP" in Olive Oil Extraction Process. Unpublished M. Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2014.

Olive oil is extracted from fruits of the olive tree which considered as one of the most important fruit crops in Egypt. HACCP system is an international system for food safety. So, the present work was carried out to investigate the possibility of implementation of HACCP system in different methods of olive oil extraction to improve the quality and safety of olive oil. Detailed studies of different olive oil extraction plants, were achieved, these plants include Traditional and Hydraulic press and Centrifugation plants.

Olive oil extraction:

1- Traditional mill:

The results of equipments and worker's hands swabs showed noticeable microbiological load including coliform group. Water samples were contamination by coliform group. Olive paste was investigated for its content of total bacterial count, coliform group, yeast & mold and aerobic spore forming bacterial count which increased from 3, 3.18, 3.78 and 1log cfu/g to 4.48, 3.9, 4.8 and 1.6 log cfu/g; respectively, after crushing and malaxation step. The chemical characteristics of the produced olive oil were acidity (2.04%), K₂₃₂ (2.24), K₂₇₀ (0.68), peroxide value (27.22), TBA (3.13) and total phenols (140).

Receiving of olive fruits and extraction of olive oil by Traditional press were considered as critical control points. Propose a modifying to some steps during the extraction process, these steps are olive fruits spreading, crushing and malaxation and separation by gravity. Corrective actions have been identified which working to return manufacturing line to the correct mode, for example develop particular specifications for olive fruits, spread olive fruits

far from the direct sunlight, making flash washing after spread olive fruits, replace the management crusher with animal administered by machine, use disk filters made of polyethylene instead of filters made of palm leaves, oil storage in tanks of stainless steel with a conical base instead of plastic drums.

2- Hydraulic press mill:

The results of equipments and worker's hands swabs showed noticeable microbiological load including coliform group. Water samples were contaminated by coliform group. Microbial load of olive paste during crushing process was decreased which may attribute to the events of mechanic damage to microbial cell walls during crushing process. While it was observed an increment of the microbial load of the olive paste during the malaxation process. The chemical characteristics of the produced olive oil were; acidity (1.46%), K_{232} (2.17), K_{270} (0.45), peroxide value (10.26), TBA (1.86) and total phenols (300). The step of olive fruits receiving, olive fruits cleaning, malaxation, extraction of olive oil and separation of olive oil were considered as critical control points. Temperature and time during crunching and malaxation and pressure processes could be regarded as measures to control microbial hazard and increase the quality of the oil output. Corrective actions have been identified which working to return manufacturing line to the correct mode, for example develop particular specifications for olive fruits, renew frequently washing water, effectiveness maintenance, cleaning and disinfection program, training courses for operator, application good hygiene practices and good manufacturing practices.

3- Centrifugation mill:

The results of equipments and worker's hands swabs showed noticeable microbiological load did not including coliform group. Water samples were not contamination by coliform group. Microbial load of olive paste during crushing process was decreased. While observed increase of the microbial load of the olive paste during the malaxation process. The chemical characteristics of the produced olive oil were acidity (0.78%),

 K_{232} (1.98), K_{270} (0.21), peroxide value (7.53), TBA (1.95) and total phenols (610).

Receiving olive fruits, olive fruits cleaning, malaxation and extraction of olive oil by centrifugation were considered as critical control points. Temperature and time during crushing and malaxation processes could be regarded as measures to control microbial hazard and increase the quality of the oil output. Corrective actions have been identified which working to remanufacturing line to the correct mode, for example develop particular specifications for olive fruits, renew frequently wash water, program effectiveness maintenance, cleaning and disinfection, training courses for operator, application good hygiene practices and good manufacturing practices.

Key Words:

GMP - Hazard - HACCP – Hydraulic press - Quality – Olive oil - Safety.

ACKNOWLEDGMENT

All praises are due to Allah, who blessed me with kind professors and colleagues and gave me the support to produce this thesis. I would like to thank my family for their support permanent to me.

I would like to express my deepest gratitude to Prof. Dr. M.H.O. El-Kalyoubi, Professor of Food Science, Faculty of Agriculture, Ain Shams University, for his paternal guidance, supervision, valuable help and provided endless effort for me throughout this investigation.

I wish also, to express my deepest gratitude to Dr. M.M.M. Abd El-Razik, Assistant of Food Science and Technology, Faculty of Agriculture, Ain Shams University, for his valuable suggestion, encouragement and helpful supervision during the period of this investigation.

Sincere appreciation to Dr. F.O. Abou-Zaid, Agri-Industrialization Unit, Desert Research Center, for his supervision, plentiful advice and provided endless effort for me to complete this work.

I would like, also, to acknowledge Colleagues sustainable development station Marsa Matrouh, all madrih staff agriculture Marsa Matrouh and owner traditional mill for the valuable helps during the extraction of oil.

Thanks also extended to all members of Food Science Dept., Faculty of Agriculture, Ain Shams University and Agri-Industrialization Unit, Desert Research Center.

CONTENTS

CONTENTS	page
LIST OF TABLES	Viii
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
2.1. Olive production	4
2.2. Olive oil	4
2.2.1. Olive oil categories	5
2.2.1.1. Extra virgin olive oil	5
2.2.1. 2. Virgin olive oil	5
2.2.1.3. Ordinary virgin olive oil	5
2.2.1.4. Refined olive oil	6
2.2.1.5. Olive oil	6
2.2.1.6. Refined olive-pomace oil	6
2.3. Quality of olive oil	6
2.3.1. Factors affecting quality of olive oil	7
2.3.1.1. Agricultural practices of the olive tree	7
2.3.1.2. Maturity stage	7
2.3.1.3. Olive Harvesting	9
2.3.1.3.1. Methods of harvest olive fruit	9
2.3.1.4. Transport of the olives to the mill	10
2.3.1.5. Time between the harvesting and the	
extraction of the oil	11
2.3.1.6. The postharvest of mill olives	12
2.3.1.7. Leaf removal and washing	12
2.3.1.8. Olive crushing	14
2.3.1.9. Olive malaxation	15
2.3.1.10. Olive oil extraction systems	16
2.4. Food safety systems	19

2.4.1. HACCP system as a food safety tool	20
2.4.2. Hazard analysis and critical control point	
(HACCP) system	21
2.4.2.1. What is the HACCP system?	21
2.4.2.2. History of HACCP	22
2.4.2.3. Reasons to use HACCP as food safety tool	24
2.4.2.4. Benefits of the HACCP system	25
2.4.2.5. How to implement HACCP system	26
2.4.2.5.1. Conduct a Hazard Analysis	27
2.4.2.5.2. Determine the critical control points	
(CCPs)	29
2.4.2.5.3. Establish critical limits	29
2.4.2.5.4. Establish monitoring procedures	30
2.4.2.5.5. Establish corrective actions	31
2.4.2.5.6. Establish verification procedures	31
2.4.2.5.7. Establish record-keeping and	
documentation procedures	32
2.4.2.6. Olive oil safety	33
2.4.2.6.2. Implementation of HACCP system in	
extraction of olive oil	34
III. MATERIALS AND METHODS	38
3.1. Materials	38
3.1.1. Olive fruits	38
3.1.2. The microbiological analysis	38
3.1.2.1. Nutrient agar medium	38
3.1.2.2. Potato dextrose agar (PDA)	38
3.1.2.3. MacConkey agar	39
3.2. Methods	40
3.2.1. Application of HACCP system	40
3.2.2. Inspection the prerequisite programs of different	_
olive oil extraction plants	40
3.2.3 Microbiological analysis	42

3.2.3.1. Sampling	42
3.2.3.1.1. Sample of raw material and sample during	
extraction process	42
3.2.3.1.2. Samples from equipments and worker's	
hands	43
3.2.3.1.3. Settling plates	44
3.2.4. Olive oil extraction	44
3.2.5. Proximate composition of olive fruits	48
3.2.5.1. Determination of moisture content, crude	
protein, total lipids and Ash	48
3.2.6. Phsicochemical analysis of olive oil	48
3.2.6.1. Acidity and peroxide value	48
3.2.6.2. Gas-liquid chromatographic analysis of fatty	
acid	48
3.2.6.3. Ultra-Violet absorption	49
3.2.6.4. Total polyphenols	50
3.2.6.5. Thiobarbituric acid (T.B.A.) test	50
3.2.6.6. Iron and lead elements	50
3.2.7. Statistical analysis	50
IV. RESULT AND DISCUSSION	51
4.1. Traditional press plant	51
4.1.1. Listing the prerequisite programs (PRPs)	51
4.1.2. Implementation HACCP system on Traditional	
pressing mill	54
4.1.2.1. Hazard analysis	54
4.1.2.1.1. Biological hazards	55
4.1.2.1.1.1 Swabs	55
4.1.2.1.1.1 Equipments	55
4.1.2.1.1.1.2. Worker's hands	56
4.1.2.1.1.2. Air	57
4.1.2.1.1.3. Microbiological assay	58
4.1.2.1.1.3.1. Water	58

4.1.2.1.1.3.2. Olive fruits and sample from	
different extraction line	59
4.1.2.1.2. Chemical hazards	62
4.1.2.1.2.1. Approximate analysis of olive fruits	
after different spread periods	
comparing with fresh fruits in	
Traditional press mill	62
4.1.2.1.2.2. Content of iron and lead	
elements	63
4.1.2.1.2.3. Chemical properties of olive oil	
produced by Traditional press	
system	64
4.1.2.1.2.4. Fatty acid composition of olive oil	
extracted by Traditional press	
system	65
4.1.2.1.3. Physical hazards	67
4.1.2.2. Identify critical control points	67
4.1.2.3. Set the critical limits for critical control points	
	69
4.1.2.4. Establish monitoring procedures for the	
critical control points	69
4.1.2.5. Establish a corrective action	69
4.1.2.6. Establish verification procedures	69
4.1.3. Details of HACCP application on extraction steps	
	70
4.1.3.1. Receiving of raw materials (olive fruits and	
water)	70
4.1.3.2. Olive fruits spreading	74
4.1.3.3. Crushing and malaxation process	75
4.1.3.4. Extraction of olive oil	77
4.1.3.5. Oil separation	78
4.2. Hydraulic press plant	79

4.2.1. Listing the prerequisite programs (PRPs)	79
4.2.2. Implementation HACCP system on Hydraulic	
press mill	82
4.2.2.1. Hazard analysis	82
4.2.2.1.1. Biological hazards	83
4.2.2.1.1.1. Swabs	83
4.2.2.1.1.1.1. Equipments	83
4.2.2.1.1.1.2. Work's hands	84
4.2.2.1.1.2. Air	85
4.2.2.1.1.3. Microbiological assay	86
4.2.2.1.1.3.1. Water	86
4.2.2.1.1.3.2. Olive fruits and sample from	
different extraction line	87
4.2.2.1.2. Chemical hazards	90
4.2.2.1.2.1. Approximate analysis of olive fruits	
used in Hydraulic press mill	90
4.2.2.1.2.2. Content of iron and lead	
elements	91
4.1.2.1.2.3. Chemical analysis of olive oil	
produced by Hydraulic press system	
	92
4.2.2.1.2.4. Fatty acid composition of olive oil	
extracted by Hydraulic pressing	
system	94
4.2.1.3. Physical hazards	95
4.2.2.2. Identify critical control points	95
4.2.2.3. Set the critical limits for critical control	
points	97
4.2.2.4. Establish monitoring procedures for the	
critical control points	97
4.2.2.5. Establish a corrective action	98
4.2.2.6. Establish verification procedures and	