Telescopic crown versus anterior splint bar attachment of implant supported removable partial denture restoring kennedy classI modification one

A thesis submitted to the Faculty of Dentistry Ain Shams University, in Partial Fulfillment of the Master Degree in Oral and maxillofacial Prosthodontics

By **Hythem Hamed Abdelatif**

B.D.S (2003) Faculty of Dentistry Ain Shams University

Faculty of Dentistry
Ain Shams University
2011

SUPERVISORS

Prof. Dr. Ingy Talaat Lebshtien

Professor of Prosthodontics and Chairman of
Prosthodontic Department
Faculty of Dentistry
Ain Shams University

Dr.Rami Maher Ghali.

Lecturer of Prosthodontics
Prosthodontic Department
Faculty of Dentistry
Ain Shams University

أعوذ بالله من الشيطان الرجيم

بسم الله الرحين الرحيم ولسوف يبطيك ربك فترضى

صدق الله العظيم

سورة الضحى _ الاية ٥

LIST OF CONTENTS

Introduction	1
Review of Literature	3
Distal extension removable partial dentures	3
Problems of distal extension removable partial	4
dentures	
Possible solutions for the distal extension	6
problems	
- Load reduction	7
- Distribution of the load between teeth and	
residual ridge	8
- Removable partial overdenture	9
- Implant in distal extension cases	10
Distal extension removable partial denture with	
an anterior modification	14
Different treatment modalities of distal	
extension removable partial denture with an	
anterior modification	15
- <u>Fixed bridge</u>	15
- Removable partial denture	15
- Removable partial overdenture	15
• Bar attachments	16
Types of bar attachments	18

Disadvantages of bar attachments	20
• Telescopic overdenture	21
Types of telescopic crowns	22
Advantages of telescopic crowns	26
Disadvantages of telescopic crowns	28
- Implant supported removable partial	
<u>denture</u>	29
Different types of attachments for implant	
overdenture	29
Stress analysis	32
Holographic interferrometry	32
Stereo photogrammetric analysis	32
Photo elasticity	33
Brittle Lacquer and application in dentistry	35
Finite Element Analysis	36
strain gauge stress analysis	41
Aim of the study	43
Materials and methods	44
Results	75
Discussion	87
Summary and conclusions	95
References	97
Arabic summary	

LIST OF FIGURES

Figures		Page
Figure1	Educational acrylic model containing the two	45
	canines, first and second premolars.	
Figure2	The canines and premolars positioned in the	45
	rubber base impression, with their roots wrapped	
	by tin foil.	
Figure 3	Cast in wax containing the two canines, first and	46
	second premolars.	
Figure 4	The duplicated acrylic cast	46
Figure 5	Preparation of the abutments in the duplicated	٤٧
	acrylic cast for the telescopic design.	
Figure 6	Beds preparation for implant installation.	49
Figure 7	Implant installation in the second molar region in	49
	the duplicated acrylic cast.	
Figure 8	Prepared abutments 3-4mm in height screwed to	50
	their corresponding implants.	
Figure 9	The duplicated stone cast.	51
Figure 10	The duplicated stone cast with wax patterns for the	51
	primary copings on the removable dies	
Figure 11	primary copings temporarily cemented on the	52
	abutments	
Figure 12	Rubber base impression of the acrylic model after	53
	cementation of the primary copings.	
Figure 13	Refractory cast upon which wax pattern for the	5٣

	telescopic retainer was completed.	
Figure 14	Checking the metal framework on the model for	54
	complete seating.	
Figure 15	Finished telescopic overdenture on the acrylic	55
(A)	model.	
Figure 15	Fitting surface of the finished telescopic	55
(B)	overdenture.	
Figure 16	Preparation of the abutments in the duplicated	57
	acrylic cast for the splint bar design	
Figure 17	Beds preparations for implant installation.	58
Figure 18	Implant installation in the second molar region in	5۸
	the duplicated acrylic cast.	
Figure 19	Prepared abutments 3-4mm in height screwed to	59
	their corresponding implants.	
Figure 20	The duplicated stone cast.	60
Figure 21	The duplicated stone cast with wax copings on the	60
	removable dies connected to the bar with its flat	
	surface lightly contacting the ridge, and its	
	rounded surface facing occlusally	
Figure 22	Cast coping interconnected with bar on the	61
	refractory cast	
Figure 23	Cast coping interconnected with bar on the acrylic	61
	model.	
Figure 24	Splint bar temporary cemented on the acrylic	64
	model	
Figure 25	Rubber base impression of the acrylic model after	63

	cementation of the splint bar	
Figure 26	Refractory cast upon which wax pattern for the	64
	splint bar overdenture was completed.	
Figure 27	Checking the metal framework on the model for	6٤
	complete seating.	
Figure 28	Finished splint bar partial overdenture on the	66
	acrylic model.	
Figure 29	The clip in the fitting surface of the overdenture.	66
Figure 30	The strain gauge	68
Figure 31	Reduction at the sites corresponding to stain gauge	68
(A)	installation in the first model.	
Figure 31	Reduction at the sites corresponding to strain	69
(B)	gauge installation in the second model.	
Figure 32	Installed strain gauge on the telescopic model.	69
(A)		
Figure 32	Installed strain gauge on the splint bar model.	70
(B)		
Figure 33	The universal testing machine.	7•
Figure 34	Load application to the telescopic acrylic model	72
	unilaterally.	
Figure 35	Digital screen of the universal testing machine	72
	showing the amount of applied force.	
Figure 36	Load application to the telescopic acrylic model	73

Load application to the splint bar acrylic model

Load application to the splint bar acrylic model

73

74

bilaterally.

unilaterally.

Figure 37

Figure 38

bilaterally.

Figure 39	Mean values of micro strains induced around	76
	abutments and implant during unilateral loading	
	for design I.	
Figure 40	Mean values of micro strains induced around	77
	abutments and implant during bilateral loading for	
	design I.	
Figure 41	Mean values of micro strains induced around	80
	abutments and implant during unilateral loading	
	for design II.	
Figure 42	Mean values of micro strains induced around	80
	abutments and implant during Bilateral loading for	
	design II.	
Figure 43	Mean values of the recorded micro strains around	84
	the abutment teeth and the implant when unilateral	
	load was applied on the two studied designs.	
Figure 44	Mean values of the recorded micro strains around	86
	the abutment teeth and the implant when unilateral	
	load was applied on the two studied designs.	

LIST OF TABLES

Tables		Page
Table 1	Mean values and standard deviation of micro strains	76
	induced around abutments and implant during	
	unilateral and bilateral loading for design I	
Table 2	Mean values and standard deviation and paired T test	78
	of micro strains induced around abutments and implant	
	during unilateral and bilateral loading for design I	
	(supported posteriorly by implant and anteriorly by	
	telescopes)	
Table 3	Mean values and standard deviation of micro strains	79
	induced around abutments and implant during	
	unilateral and bilateral loading for design II	
Table 4	Mean values and standard deviation and paired T test	82
	of micro strains induced around abutments and implant	
	during unilateral and bilateral loading for design II	
	(supported posteriorly by implant and anteriorly by	
	splint bar)	
Table 5	The Mean values and standard deviations of the	84
	recorded microstrains around the abutment teeth and	
	the implant when unilateral load was applied on the	
	two studied designs.	
Table 6	The Mean values and standard deviations of the	86
	recorded microstrains around the abutment teeth and	
	the implant when bilateral load was applied on the two	
	studied designs.	

Introduction

Distal extension edentulous base with anterior modification area restored with removable partial denture is not satisfactory from the biomechanical point of view. The addition of an anterior segment to this distal extension partial denture results in teeter-tooter action with inevitable torque and damage to the denture supporting structures.

Biomechanically, it is better to replace missing anterior segment with fixed restoration rather than being included in the partial denture. However, in some situations it is necessary to replace the missing anterior teeth with a removable partial denture rather than the fixed restoration due to the length of the edentulous span, loss of large amount of the residual ridge by resorption, accident or surgery resulting into much vertical space preventing the use of fixed restoration or in which esthetics requirements can be better met through the use of teeth added to the denture framework.

Applegate reported that cases with Kennedy class one with anterior modification space are countered with only few remaining teeth which will be weakened and should be preserved, in this situation an anterior splint bar provides a fixed splint that lightly rest on the gingival tissues to support the removable partial denture. The use of internal clip attachment with connecting bar provides support, retention and stability for the anterior modification area and serves to eliminate both occlusal rests and retentive clasps on the adjacent abutment teeth. (1)

Telescopic crowns have also been used successfully in removable partial dentures and fixed partial dentures. Telescopic crowns are known as double crown, crown and sleeve coping, or as konuskrone, a German term that described a cone shaped design. These crowns consist of an inner or primary telescopic coping, permanently cemented to an abutment tooth and a congruent detachable outer or secondary crown which is rigidly anchored in the detachable prosthesis. Copings were designed to protect the abutment from dental caries and thermal irritations and also provide retention and stability for the secondary crown. The secondary crown engages the primary coping to form a telescopic unit and serves as an anchor for the remaining of the dentition. (2)

Different taper angles preparation for the telescopic crown to retain overdenture have been introduced .A non tapered (zero degree) ,a two degree ,a six degree and a twelve degree taper angle have been suggested to control the load transmitted to the overdenture supporting structures.

Recently, it has been reported that free standing single dental implant can be used to solve problems with mandibular bilateral distal extension in removable partial denture if posterior abutment had been lost.

Removable partial dentures that incorporate osseointegrated implants have provided satisfactory alternatives to conventional partial dentures. An effective approach in the implant supported overdentures offers improved retention, stability, support, function and comfort. (3)

In-vitro stress analysis studies have been widely used to provide good understanding of the nature of stresses and strains acting on dental structures, even more than in-vivo studies. This can be explained by the fact that any valid in-vivo test has to be repeated under the same conditions every time standardizing all the variables except the one under investigation which is clinically impossible. Thus, comparative studies would be more accurate and practical if they were laboratory performed.

Many experimental stress analysis methods have been employed to evaluate biomechanical loads. These techniques compromise photo- elastic stress analysis, strain gauge analysis, holographic interferometer and finite element stress analysis.

Review of literature

Distal extension removable partial dentures

Extension base removable partial denture is defined according to the Academy of Prosthodontic terms as "A removable partial denture that is supported and retained by natural teeth only at one end of the denture base segment and in which a portion of the functional load is carried by the residual ridge". (4)

DeVan stated that "Preservation of what is remaining is preferred over meticulous replacement of what is missing". The main requirement of the successful removable partial denture is to restore missing teeth as well as maintaining the oral and paraoral structures in a good condition. (5)

Removable partial dentures continue to be the treatment of choice for patients, especially those with distal extension bases, financial concerns, technical and biologic conditions that contraindicate treatment with fixed prostheses or implant supported prostheses. (6,7)

Among the various partially edentulous conditions that necessitated removable partial denture construction, removable partial denture restoring a bilateral distal extension edentulous span is the most common clinical situation. ⁽⁸⁾ As a result of the general pattern of tooth loss, it is more frequently encountered in the mandible than the maxilla ⁽⁹⁾

Problems of distal extension removable partial dentures:

In distal-extension removable partial dentures, the occlusal force tends to cause the base to move in a tissueward direction, since the sink of the posterior denture teeth is not protected by an abutment tooth on the distal of the base. (10,11)

The distal extension removable partial denture gains its support from two different supporting oral structures; the mucoperiosteum covering the residual ridge and the periodontium of the abutment teeth. These structures have disparate viscoelastic behavior which creates a problem in distributing the functional stresses between them. (12)

The resiliency of the mucoperiostium of the residual ridge is about twenty five times greater than that of the periodontal ligaments of the abutment teeth. This difference in degree of support results in rotation of the distal extension removable partial denture about its most posterior abutment inducing stresses on the abutment teeth and excessive bone resorption of the underlying residual ridge. (13)

Monteith et al., (1984) and Lammie and Laird (1986) reported that the movement of the distal extension base is generated as a result of multidirectional forces transmitted vertically, laterally and anteroposteriorly. These forces subsequently induce multidirectional movements and rotation of the extension base saddle around a vertical, horizontal and anteroposterior axes. These movements create heavy cantilever forces on the abutment teeth and trauma to the residual ridge followed by ridge resorption. (8, 13)