Comparison between three-dimensional placental volume and uterine artery and umbilical artery Doppler in prediction of preeclampsia

Thesis

Submitted to Partial Fulfillment of the Master Degree
In Obstetrics and Gynecology

By

Rouvan Mohamed Abdelfattah Goham(M. B., B.Ch)

Supervised by

Prof. Dr. Ali Mohamed Ali ElSemary

Professor of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Dr. Nawara Mohamed Hashish

Assistant professor of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Dr. Ayman Ahmed Hassan Abdullah

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Cairo University

Cairo University
Faculty of Medicine Al Kasr Al-Ainy

سورة البقرة الآية: ٣٢

First, I am indebted and grateful to my **God** who gives me a lot of blessings.

My acknowledgement and cordial appreciation to **Prof. Dr. Ali Mohamed Ali Alsemary,** Professor of Obstetrics and Gynecology, Faculty of Medicine-Kasr Al Ainy University, for his unlimited support, continuous stimulatin, kind supervision and generous help. His sincere advice and impressive encouragement pushed me forward to fulfil this work.

I wish to express my respect and sincere thanks to **Dr.**Nawara Mohamed Hashish, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine-Kasr Al Ainy University for her kind help and constructive suggestions to achieve this work.

I would also like to express my deep appreciation to **Dr. Ayman Hassan Abdallah,** literature of Obstetrics and Gynecology, Faculty of Medicine-Kasr Al Ainy Univerity, for his great kindness, constant assistance and guidance.

I am indebted and grateful to all my patients through this work.

Abstract

AIM OF WORK: To compare the value of first trimester three-dimensional placental

volume and second trimester uterine artery in predicting pregnancy-induced hypertension.

Patients and methods:

Our study included 100 pregnant women (50 high risk & 50 control group). They were

subjected to measurement of placental volume at their first trimester (11- 13 weeks) and blood

flow indices assessment of the uterine artery at second trimester (20-22weeks).

Results:

Negative correlation between placental volume and uterine blood flow indices. Positive

correlation between placental volume and VI, FI and VFI in prediction of preeclampsia.

Conclusion:

Placental volume measurement between 11-13 weeks is sensitive to predict preeclampsia

as a first trimester screening test. So it has the advantage of early start of prophylactic treatment.

Keywords: Preeclampsia - Uterine artery Doppler - Placental volume

Contents

Title	Page	
List of Abbreviation		I
List of Tables of Review		III
List of Tables of Results		IV
List of Figures		VI
List of Charts		VII
Introduction		1
Aim of the Work		5
Review of Literature		
- Pathophysiology of preeclampsia		6
- Uterine artery Doppler in the	prediction of	
preeclampsia and adverse pregnancy o	•	16
- Three-dimensional evaluation of the pla	centa	34
Patients and Methods		47
Results		52
Discussion		61
Summary		68
•		71
References		
Arabic Summary		

List of Abbreviations

Abb.	Meaning
2DUS	2-dimensional ultrasonography
3DUS	3-dimensional ultrasonography
AEDF	Absent end diastolic flow
AT1	Angiotensin II type 1 receptor
CRL	Crown – rump length
DIC	Disseminated intravascular coagulopathy
eNOS	Endothelial nitric oxide synthase
FHR	Fetal heart rate
FI	Flow index
GDM	Gestational diabetes mellitus
HELLP	Hemolysis, Elevated Liver enzymes and low
	platelet count
HLA	Human leukocyte antigen – C
IUFD	Intrauterine fetal death
IUGR	Intrauterine growth restriction
MMP2	matrix metalloproteinase 2
MMP9	matrix metalloproteinase 9
MVI	Deciduo-Myometrial vascularization index
NPV	Negative predictive value
PET	Preeclamptic toxaemia
PI	Pulsatility index
PIGF	Placental growth factor
PIH	Pregnancy – induced hypertension
PIR	Pulsitality index resistance
PPV	Positive predictive value
PQ	Placental quotient

Abb.	Meaning
PV	Placental volume
PVI	Placental vascularization index
REDF	Reversed end diastolic flow
RI	Resistance index
ROC curve	Receiver Opertating Characteristic
S/D	Systolic / Diastolic ratio
sEng	Soluble endoglin
SFlt-1	Soluble fms-like tyrosine kinase I receptor
SGA	Small for gestational age
TGF-beta	Transforming growth factor beta
UM	Umbilical artery
UPCS	Uteroplacental circulation space
VEGF	Vascular endothelial growth factor
VFI	Vascularization flow index
VI	Vascularization index
VOCAL	Virtual Organ Computer-aided Analysis

List of Tables in Review

Table	Title	Page
Tab. (1)	Screening tests for pre-eclampsia	18
	identified in the literature	
Tab. (2)	Likelihood ratio for pre-eclampsia	26
	development in positive and negative test	
	result, using uterine arteries Doppler	
	velocimetry in second trimester.	
Tab. (3)	Likelihood ratio for pre-eclampsia	26
	development in positive and negative test	
	result, using uterine arteries Doppler	
	velocimetry in first trimester.	
Tab. (4)	Definitions of placental parameters	36
	(quoted from Placenta from development	
	to disease	

List of Tables in Results

Table	Title	Page
Tab. (1)	Mean ± SD for maternal age in the	52
	studied groups.	
Tab. (2)	Number of patients who developed PIH,	52
	PIH+D and who had normal pregnancy.	
Tab. (3)	Number and percentage of risk factors	53
	included in our study of high risk group9	
Tab. (4)	The difference in placental volume and	54
	placental vascular indices between the	
	two groups.	
Tab. (5)	Comparison between uterine artery blood	54
	flow indices among the two groups.	
Tab. (6)	Correlations between placental volume	55
	and other indices.	
Tab. (7)	Cutoffs between both high risk & normal	56
	groups as regard placental volume, VI,	
	FI, and VFI in prediction of	
	preeclampsia.	
Tab. (8)	Affection of measurement of the	56
	placental vascular indices on the	
	sensitivity and specificity of placental	
	volume measurement in detection of	
	preeclampsia.	
Tab. (9)	Cutoffs between both high risk& normal	57
	groups as regard uterine artery Doppler in	
	prediction of preeclampsia.	

List of Figures

Figure	Title	Page
Fig. (1)	Abnormal placentation in preeclampsia	7
Fig. (2)	Unifying hypothesis of pre-eclampsia	9
	pathophysiology	
Fig. (3)	Unifying hypothesis of pre-eclampsia	14
	pathophysiology	
Fig. (4)	Uterine artery flow measurement	20
	transabdominally at the crossover with the	
	external iliac artery	
Fig. (5)	Uterine artery flow measurement	21
	transvaginally lateral to the uterine cervix	
Fig. (6)	Normal resistance Uterine Artery Doppler at	24
	23 weeks and an absence of notching	
Fig. (7)	Uterine artery notching	25
Fig. (8)	Estimation of 3D placental volume.	37
Fig. (9)	Three-dimensional and power Doppler	39
	Ultrasound of the placenta	
Fig. (10)	Method for calculating vascular indices using	42
	Sonobiopsy.	
Fig. (11)	Measurement of placental volume using	49
	VOCAL technique.	

List of Charts

Figure	Title	Page
Chart (1)	Comparison between placental volume	57
	and pulsatility index in prediction of	
	preeclampsia	
Chart (2)	Placental volume in studied groups.	58
Chart (3)	VI measured in both studied groups.	59
Chart (4)	FI measured in both studied groups.	59
Chart (5)	VFI measured in both studied groups.	60
Chart (6)	Negative correlation between placental	60
, ,	volume and pulsatility index of uterine	
	artery.	

Introduction

Preeclampsia and intrauterine growth restriction (IUGR) are major contributors to perinatal mortality and morbidity (McIntire et al., 1999).

The incidence of preeclampsia in the United States is estimated to range from 2% to 6% in healthy, nulliparous women. Among all cases of the preeclampsia, 10% occur in pregnancies of less than 34 weeks' gestation. The global incidence of preeclampsia has been estimated at 5-14% of all pregnancies (**Zavaleta et al., 2006**).

In developing nations, the incidence of the disease is reported to be 4-18%, with hypertensive disorders being the second most common obstetric cause of stillbirths and early neonatal deaths in these countries (Vatten and Skjaerven, 2004).

These pregnancy complications not only alter the immediate outcomes of pregnancy at the time of delivery but also the long-term cardiovascular health of the affected women and children. For example, a history of preeclampsia increases a female's risk of myocardial infarction, stroke or diabetes mellitus by two to eight folds over the next two decades (**Ray et al., 2005**).

Moreover, newborns diagnosed with IUGR at birth have a two to eightfold increased risk for hypertension, cardiovascular disease, diabetes mellitus or renal disease as adults (Gluckman et al., 2008).

Normal development of the intervillous space during the first trimester is crucial to proper fetal-maternal interaction. Pivotal to this is the trophoblast-mediated modification of the small-caliber spiral arteries into wide-caliber utero-placental vessels that deliver blood to the intervillous space and ultimately to the placenta at low pressure.

Inadequate modification of the spiral arteries resulting in decreased blood flow to the placenta has been implicated in the pathophysiology of preeclampsia.

The vasoconstriction phenomena of the tertiary stem villi is considered responsible for the upriver modifications of the normal wave flow velocity of the umbilical artery (U.A), with a decrease in the diastolic velocities reflected by an increase in the resistance and impedecance indices.

The fetus with abnormal U.A Doppler is markedly small for gestational age. Thus, Doppler of U.A is considered a risk - discriminator in the management of small for gestational age fetuses but Doppler studies show the best result many weeks afterwards at approximately 22-24 weeks. So, the prevention of preeclampsia remains a considerable challenge in obstetrics.

Although the symptoms of preeclampsia and IUGR generally manifest in the second to third trimester of pregnancy, their underlying pathology takes place in the first trimester (**Kaufmann et al., 2003**).

One possible reason why preventive strategies have proven very disappointing at present is that the proposed interventions have commenced in the mid to late second trimester, when the underlying placental dysfunction may already be established (Yan Zhong et al., 2010).

Earlier assessment before the establishment of placental dysfunction may have the potential to improve predictive value for clinical practice. While individual Doppler parameters and individual analytes on their own have poor predictive value, a combination of selected parameters appears promising. With the increased use of first-trimester screening for Down syndrome, there is the opportunity to 'piggy back' screening tests for preeclampsia and IUGR onto existing tests.

The introduction of 3-dimensional (3D) ultrasound technologies with the option of imaging vascular volumes has created an excellent opportunity to study early changes in the uteroplacental circulation space (UPCS), which includes the maternal spiral arteries and the intervillous space.

Vascular indices within the placenta are calculated from three dimensional data formed by the voxels (the basic information units of volume) for vascularization assessment of organs and structures. These indices represent the total and relative amounts of power Doppler information within the volume of interest. The vascularization index (VI) quantifies the number of color-coded voxels to all voxels within the volume expressed as a percentage, flow index (FI) represents the power Doppler signal intensity from all color-coded voxels and vascularization flow index (VFI) is the mathematical relationship derived from multiplying VI by FI (Gaglioti et al., 2008).

These indices are thought to reflect the number of blood vessels within the volume (VI), the intensity of flow at the time of the three-dimensional (3D) sweep (FI), and both blood flow and VFI. Using these indices, 3D power Doppler attempts to identify the different branches of the villous vessels, as well as the quantitative assessment of the number of vessels.

So, reduction in these indices has the potential of being an earlier marker of placental dysfunction than the increase in the uterine and umbilical artery resistance which occur later (Guiot et al., 2008).