Prognosis of Foot drop Due to Herniated Lumbar Disc after Surgical Treatment

Essay

Submitted for partial fulfillment of the master degree **in Neurosurgery**

By:

Fady Khalaf Sayed Selim

(M.B, B.Ch.)
Ain Shams University

Supervised by

Prof. Dr. Mohamad Ashraf Ghobashy

Professor of Neurosurgery
Faculty of Medicine, Ain Shams University

Dr. Khaled Fathy Saoud

Assistant Professor of Neurosurgery
Faculty of Medicine, Ain Shams University

Dr. Sherif Hashem Morad

Lecturer of Neurosurgery
Faculty of Medicine, Ain shams University

Faculty of Medicine
Ain Shams University
2013

First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr.**Mohamad Ashraf Ghobashy Professor of Neurosurgery, faculty of medicine,
Ain Shams University, for his supervision, continuous help, encouragement throughout this
work and tremendous effort he has done in the meticulous revision of the whole work. It is
a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Khaled Fathy Saoud,** Assistant Professor of Neurosurgery, faculty of medicine,

Ain Shams University, for his continuous directions and support throughout the whole work.

I am also grateful to **Dr. Sherif Hashem Morad**, Lecturer of Neurosurgery, Faculty of Medicine Ain Shams University for his enthusiasm, keen supervision, and kind help. She kindly assisted me and offered me a lot of her precious time.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Fady Khalaf Sayed Selim

Contents

List of Abbreviations List of Tables List of Figures	ii
Introduction and Aim of the Work	1
Chapter (1):Review of the motor system	5
Chapter (2):Management of Foot Drop	16
Chapter (3):Overview frame of the Lumbar spine	40
Chapter (4):Review of Lumbar disc herniation	72
Chapter (5):Prognosis of Foot Drop after surgery	96
Summary	108
References	111
Arabic Summary	

List of Abbreviations

AF : Annulus fibrosus

AFO : Artificial foot orthosis

ALL : Anterior longitudinal ligament

BMI : Body mass index

CAMP : Compound muscle action potential

CES : Cauda equine syndrome

CSF : Cerebrospinal fluid

CST : Cortico Spinal Tract

EDx : Electrodiagnostic testing

FES : Functional Electric Stimulation

HNP : Herniated nucleus puplosus

LDH : Lumbar disc herniation

LSS : Lumbar spine stenosis

LSTV : Lumbosacral transitional vertebra

MMT : Manual muscle test

MUP : Motor unit Potential

NP : Nucleus pulposus

PLL : Posterior longitudinal ligament

SNAP : Sensory nerve action potential

List of tables

Table	Title	Page
1	Distinguish between upper and lower motor weakness	23
2	How to localize the lesion site in foot drop on NCS-EMG findings?	32
3	Lumbar disc syndromes	81
4	D.D. of low back pain according to etiology	82
5	D.D. of sciatica according to the site of the lesion	83
6	Percentage of postoperative patients recovery according to the onset of foot drop	104
7	Outcome in 50 patient with L4-5 disc prolapse	105
8	Recent studies of preoperative foot drop recovery after discectomy for lumbar disc herniation	106

List of Figures

Fig.	Title	Page
1	Typical gait cycle	6
2	Abnormal gait (steppage gait)	7
3	The origin of CST	9
4	The pathway of CST	10
5	Transverse section of the spinal cord	12
6	Anatomy of sciatic nerve	13
7	Anatomy of common peroneal nerve	15
8	Steppage gait	18
9	Examination of foot strenght	20
10	SNAP in recording sural nerve	27
11	Normal muscle response (MUP)	28
12	Abnormal MUP	28
13	CAMP recording from both EDB and	30
	TA	
14	AFO	36
15	Electrode positions for foot drop FES	38
16	The spinal column curves	41
17	The regions of the spinal column	41
18	Morphology of the lumbar vertebra	43
19	Transverse view of L2 showing normal	45
	disc appearance	
20	Ligaments of the lumbar spine	48
21	Transverse section through the posterior	51
	abdominal wall	
22	Low back muscles	52
23	Anatomy of the spinal canal	54

List of Figures (Cont.)

Fig.	Title	Page
24	The lumbar artery	56
25	Venous drainage of the lumbar vertebrae	57
26	Intradiscal pressure during different	61
	body posture	
27	T.S. showing patho-morphological	65
	changes of the normal and degenerated	
	disc	
28	Different degrees of disc herniation	67
29	Different sites of disc herniation	68
30	CT Lumbar spine shows schmorl`s	69
	nodules	
31	Symptoms of herniated lumbar disc	77
32	Lasegu`s straight leg raising test	78
33	Sensory dermatomes distribution of	80
	lower limbs	
34	MRI findings for lumbar disc herniation	87
35	The incision of microdiscectomy	92
36	Endoscopic lumbar discectomy	93
37	Percutaneous endoscopic lumbar	94
	discectomy	

Introduction

Drop foot is the name given to a particular style of walking or gait (steppage gait) which is often present in individuals with a neurological deficit in the nervous system. The neurological deficit in drop foot results from poor control of ankle and toe's dorsiflexor muscles. (*Horsley W, 2012*).

Walking becomes a challenge as while walking, people suffering this condition drag their toes along the ground or bends their knees to lift their foot higher than usual to avoid the dragging. This serves to raise the foot high enough to prevent the toe from dragging and prevents the slapping. To accommodate the toe drop, the patient may use a characteristic tiptoe walk on the opposite leg, raising the thigh excessively, as if walking upstairs, while letting the toe drop. (*Benzel E*, 2012).

In consequence patients tend to develop a different and less stable gait which impacts on their mobility, speed and balance. (*Iizuka Y et al.*, 2009).

Drop foot or weakness of the tibialis anterior muscle is not a disease but a symptom of an underlying medical condition. Depending on the cause, drop foot may be temporary or permanent. Often drop foot is caused by injury to the peroneal nerve deep within the lumbar and sacral spine. The peroneal nerve is a division of the sciatic nerve. The peroneal nerve runs along the lateral side of the lower limb (below the knee) and branches off into each ankle, foot and first two toes. It innervates or transmits signals to muscle groups responsible for ankle, foot, toe movement and

sensation. That's why weakness, pain and numbness may accompany loss of function.

The peroneal nerve is susceptible to different types of injury, Such as nerve compression from lumbar disc herniation (e.g. L4, L5, and S1), trauma to the sciatic nerve, spondylolisthesis, spinal canal stenosis, spinal cord injury, bone fractures (leg, vertebrae), stroke, tumor, diabetes mellitus, lacerations, gunshot wounds or crush-type injuries in the lower limbs.(*Benzel E, 2012*).

However, foot drop due to Lumbar Disc Prolapse and Lumbar Canal Stenosis is relatively rare (a finding in 1.2-4% of patients with this condition), and although several studies have addressed this condition, its mechanism and prognostic factors have not yet been adequately elucidated. (*Iizuka Y et al.*, 2009).

Radiological investigation for Lumbar Disc Prolapse and Lumbar Canal Stenosis had relayed on Magnetic resonance imaging which has proven to be an indispensable tool for the spine neurosurgeon. Its value in assessing normal and pathological lumbar anatomy, internal disc chemistry and architecture, features of lumbar spine degeneration and in diagnosing herniated lumbar discs has been well documented. (Weiner B & Patel R, 2008).

Spine MR images are assessed as follows. First, the presence or absence of eccentricity of the disc contour at the extraforaminal zone was evaluated. This included protrusion, extrusion and sequestrum of the discs. Second, the presence or absence of any changes in the diameter of the affected exiting nerve root i.e. compression. (*Moon K et al.*, 2009).

Introduction and Aim of the Work

Proper diagnosis and early intervention is the aim for restoring full function, the primary rationale of any form of surgery for disc prolapse is to relieve nerve root irritation or compression due to herniated disc material. To relieve muscle weakness due to nerve pressure, surgery usually involves removing part or the entire damaged disc. This is called a discectomy. At our practice, this procedure can often be done utilizing open discectomy, performed with or without the use of an operating microscope; this is the most common minimally invasive techniques. (Gibson J & Waddell G, 2007).

Surgery, physiotherapy, orthotic devices (AFO), medical therapy and electrical stimulation of the affected nerve. These options can be used alone or in combination with one another in the treatment of foot drop. (*Horsley W, 2012*).

Aim of the work

The aim of this work is:

To review the literature for anatomy, pathophysiology, pathogenesis, diagnosis, management of Herniated lumbar disc disorders and the subsequent prognosis of foot drop after surgical treatment.

Gait Cycle

Normal and Pathological Gait

The gait cycle is defined from the initial contact of the heel to the following heel contact.

Limb motion during steady-state constant speed locomotion involves inter-segment and inter-limb interactions for both normal and abnormal walking. Each limb segment and joint undergoes a cyclic pattern of flexion, extension, rotation, abduction, and adduction during a stride. An injury or pathology that affects a lower limb segment disrupts the cyclic gait pattern and can result in asymmetric deviations during gait. An abnormal gait cycle affects the normal energy conserving characteristics of walking, resulting in increased energy expenditure. (Alexander K, 2011).

During normal gait, the ankle joint, shank, and foot play important roles in all aspects of locomotion including: motion control, shock absorption, stability, energy conservation. At the initiation of the gait cycle, impact forces are dissipated as energy is absorbed by the soft tissues at the heel as the foot comes into contact with the ground. (Alexander K, 2011).

Review of the Motor System

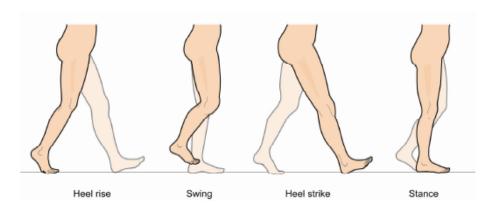


Fig. (1): Typical gait cycle showing heel rise and heel strike. (Buyer, 2010).

Weakness in the dorsiflexor and plantarflexor muscle groups is a key cause of impaired gait. The dorsiflexor muscle groups are situated anterior to the ankle joint and include the tibialis anterior, extensor digitorum longus, and extensor hallucius longus. Pathologies that affect the function of the ankle dorsiflexor muscles affect gait in both swing and initial stance phases. Swing is affected by insufficient toe clearance due to weak or absent dorsiflexor muscles and results in a steppage-type gait pattern that is commonly called foot drop. Steppage gait is a compensatory walking pattern characterized by increased knee and hip flexion during the swing phase to ensure that the toe clears the ground during walking. Weak or absent dorsiflexors may also prevent controlled deceleration of the foot shortly after initial contact that often presents as an audible foot slap. (Alexander K, 2011).

Review of the Motor System

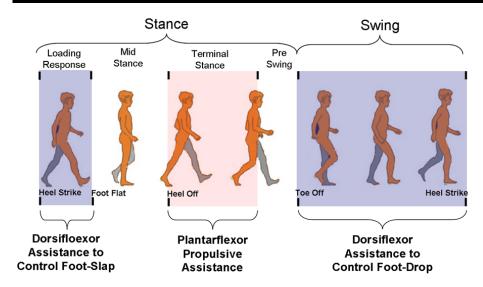


Fig. (2): A gait cycle is defined from heel strike to heel strike and further divided into multiple phases defined by functional tasks.

Abnormal gait (Steppage gait). (Alexander K, 2011).