

Ain Shams University
Faculty of Engineering
Department of Mechanical Power Engineering

ENHANCEMENT OF HEAT TRANSFER IN FLUIDIZED BED COMBUSTOR USING HEAT PIPE-HEAT EXCHANGER

A THESIS SUBMITTED
TO THE FACULTY OF ENGINEERING-AIN SHAMS UNIVERISTY
FOR THE DEGREE OF Ph.D.
IN MECHANICAL POWER ENGINEERING

By Ashraf Ebrahim Kotb Ebrahim

M.Sc. Mechanical Power Engineering (2000) B.Sc. Mechanical Power Engineering (1995) Faculty of Engineering - Ain Shams University

Supervised By

Prof. Dr. Eng.\ Ahmed El-Said Gad El Mawla

Department of Mechanical Power Engineering Faculty of Engineering - Ain Shams University

Prof. Dr. Eng.\ Mahmoud M. M. Abo El Nasr

Department of Mechanical Power Engineering Faculty of Engineering - Ain Shams University

2005

ABSTRACT

Heat pipe-heat exchanger is introduced as an innovative and enhanced technique to transfer heat from the fluidized bed combustor in industrial applications. The study presents the fluidized bed combustor as melting furnace of metals using heat pipe-heat exchanger. The study is achieved by introducing a mathematical model that connects and simulates the processes of fluidization of inert-solid particles, combustion of gaseous fuel and heat transfer by the heat pipe-heat exchanger to different types of thermal loads. These processes are considered through a system of fluidized bed combustor using gaseous fuel and using heat pipe-heat exchanger at steady state conditions, based on the following assumptions: two-phase theory of fluidization describes the fluidized bed, the fluidized bed combustor is assumed to be an ideally stirred isothermally tank reactor for both gas and solid phases, the complete combustion describes the combustion process that is completely achieved through the bed, the evaporators length equals the expanded bed height, while the condenser sections have a constant length, heat transfer is shared equally among the heat pipes and it is determined by the minimum heat transfer limits. The mathematical model is experimentally verified for two different types of thermal loads that liquid water and molten wax, a quit agreement was found. The theoretical results showed that, by using heat pipes-heat exchanger, about 57 % of 10 kW fluidized bed combustor is transferred and produces more than 8 Lit/hr of molten zinc at 600.0 °C, where the optimum operating conditions for the number of heat pipes is 2, filling ratio is 0.3, particle size is 0.5 mm.

KEYWORDS:

Fluidized Bed Combustor – Heat Pipe – Heat Exchanger – Molten Metal

......1

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors:

Prof. Dr. Eng.\ Ahmed El-Said Gad El-Mawla

Prof. Dr. Eng.\ Mahmoud M. M. Abo El-Nasr

For their supervision, guidance, encouragement and very helpful advise throughout this work.

Also, I would like to present the great respect to:

Prof. Dr. Eng. \ Hussein Zaki Barakat

For his very helpful effort during the revision of the thesis.

Ashraf E. Kotb

Contents

Acknowledgement Abstract 1

Summary 2-4 Nomenclature 5/11

List of Figures & List of Tables 12/16

CHAPTER (1): INTRODUCTION 17/20

CHAPTER (2): LITERATURE SURVEY 21-83

- 2.1 FLUIDIZATION HYDRODYNAMICS 21
 - 2.1.1 Minimum Fluidization Conditions 22
 - 2.1.2 Regimes of Fluidization 25
- 2.2 FLUIDIZED BED COMBUSTION 27
- 2.3 FLUIDIZED BED HEAT TRANSFER 31
 - 2.3.1 Heat Transfer To Immersed Tubes 31
 - 2.3.1.1 Conductive Heat Transfer 33
 - 2.3.1.2 Convective Heat Transfer 36
 - 2.3.1.3 Radiative Heat Transfer 37
 - 2.3.1.4 Some Empirical Correlations for Conductive and Convective Heat Transfer Coefficients to Vertical Tube 39
 - 2.3.2 Heat Transfer TO CONTAINING WALL 40
- 2.4 TYPES AND APPLICATIONS OF FLUIDIZED BED COMBUSTORS 41
- 2.5 CONVENTIONAL HEAT TRANSFER METHODS FROM
 - FLUIDIZED BED COMBUSTORS 47
- 2.6 HEAT PIPES (TWO-PHASE CLOSED THERMOSYPHON) 50
 - 2.6.1 Fundamental Operating Principles 50
 - 2.6.2 Heat Pipe Operating Limits 52
 - 2.6.2.1 Viscous Limit 52
 - 2.6.2.2 Sonic Limit 53
 - 2.6.2.3 Entrainment Limit 54
 - 2.6.2.4 Dryout Limit 60
 - 2.6.2.5 Boiling Limit 61
 - 2.6.3 Evaporation Process 62
 - 2.6.4 Condensation Process 662.6.5 Heat Pipe Applications 72
- 2.7 Heat Pipe-Working Fluid Selection 74
- 2.8 PRESENT WORK 75

CHAPTER (3): MATHEMATICAL MODEL 84-109

- 3.1 FLUIDIZED BED COMBUSTOR 84
- 3.1.1 Static Bed Voidage 84
- 3.1.2 Characteristics of Minimally Fluidized Bed 84
 - 3.1.2.1 Minimally Fluidized Bed Voidage 85
 - 3.1.2.2 Minimally Fluidized Bed Height 85
 - 3.1.2.3 Minimally Fluidized Bed Pressure Drop 85
 - 3.1.2.4 Minimum Fluidization Velocity 86
- 3.1.3 Characteristics of Bubbling Fluidized Bed 87
 - 3.1.3.1 Minimum Bubbling Velocity 88
 - 3.1.3.2 Initial Bubble Diameter 89

- 3.1.3.3 Maximum Bubble Diameter 89
- 3.1.3.4 Mean Bubble Diameter 89
- 3.1.3.5 Characteristic Bubble Velocity 90
- 3.1.3.6 Fluidized Bed Height 90
- 3.1.3.7 Bubble Voidage 90
- 3.1.3.8 Overall Bed Voidage 91
- 3.1.3.9 Bubble Frequency 91

3.2 HEAT TRANSFER THROUGH FLUIDIZED BED COMBUSTOR 91

- 3.2.1 Heat Transfer to the Immersed Heat Pipes (Evaporator Sections) 91
 - 3.2.1.1 Definitions of Thermal Resistances 94
 - 3.2.1.1.1 External Resistance z₁ 94
 - 3.2.1.1.1 Conductive and Convective Heat Transfer Coefficients 94
 - 3.2.1.1.1.2 Convective Heat Transfer Coefficient 95
 - 3.2.1.1.1.3 Radiative Heat Transfer Coefficient 96
 - 3.2.1.1.2 External Resistance z₉ 96
 - 3.2.1.1.3 Thickness Resistances z_2 and z_8 97
 - 3.2.1.1.4 Internal Resistances z₃ and z₇ 97
 - 3.2.1.1.4.1 Evaporation Heat Transfer Analysis z₃ 98
 - 3.2.1.1.4.2 Condensation Heat Transfer Analysis z_7 98
 - 3.2.1.2 Heat Transfer Calculation 99
 - 3.2.2 Heat Transfer to the Container Wall of the Fluidized Bed 100
 - 3.2.3 Energy Associated with the Flow of Flue Gases 104
- 3.3 OVERALL SYSTEM BALANCE AND COMBUSTION PROCESS 105
- 3.4 TOWARD THE SOLUTION OF MATHEMATICAL MODEL 106
- 3.4.1 Heat Pipe Operating Limits 106
 - 3.4.1.1 Viscous Limit 106
 - 3.4.1.2 Sonic Limit 107
 - 3.4.1.3 Boiling Limit 107
 - 3.4.1.4 Dry out Limit 107
 - 3.4.1.5 Entrainment Limit 108
- 3.4.2 Heat Pipe Working Fluid 108
- 3.5 SOLUTION OF MATHEMATICAL MODEL 108

CHAPTER (4): EXPERIMENTAL WORK 110-142

- 4.1 INTRODUCTION 110
- 4.2 FLUIDIZED BED COMBUSTOR 112
 - 4.2.1 Construction of Fluidized Bed Combustor 112
 - 4.2.2 Measuring Instrumentation for Fluidized Bed Combustor 118
- 4.3 THERMOSYPHONS 123
 - 4.3.1 Material Selection for Thermosyphons 123
 - 4.3.2 Construction of Thermosyphons 124
 - 4.3.3 Thermosyphons Preparation 126
 - 4.3.3.1 Leak Detection 126
 - $4.3.3.2\ Cleaning-Deoxidizing-Passivation\ of\ Thermosyphons\ 127$
 - 4.3.3.3 Evacuation and Charging 128
- 4.4 HEAT SINK 131
- 4.5 MEASURING INSTRUMENTATION 136
 - 4.5.1 Temperature Measurements 136

- 4.5.2 Flow Measurements 137
- 4.5.3 Gas Analysis 138
- 4.6 MEASURING TECHNIQUES 136
- 4.6.1 Fluidized bed Average Temperature, Average Height and Gas Analysis 136
- 4.6.2 Heat Transferred by Thermosyphons 141
- 4.6.3 Heat Loss From Fluidized Bed 142

CHAPTER (5): RESULTS AND DISSCUSION 143-194

- 5.1 INTRODUCTION 143
- 5.2 EXPERIMENTAL VERIFICATION OF FLUIDIZTION AND

COMBUSTION MODELLING 145

- 5.2.1 Comparison between Theoretical and Experimental Results of Bed Temperature, Bed Height, Combustion Species under Particle Size Variations 147
- 5.2.2 Comparison between Theoretical and Experimental Results of Bed Temperature, Bed Height, Combustion Species under Static Bed Height Variations 150
- 5.2.3 Comparison between Theoretical and Experimental Results of Bed Temperature, Bed Height, Combustion Species under Fuel Flow Rate Variations 154
- 5.3 EXPERIMENTAL VERIFICATION OF HEAT TRANSFER BY HP-HE MODELLING 157
 - 5.3.1 Comparison between Theoretical and Experimental Results of Heat Transfer Data under Cooling Water Flow Rate Variations 158
 - 5.3.2 Comparison between Theoretical and Experimental Results of Heat Transfer Data under Number of Heat Pipes Variations 163
 - 5.3.3 Fluidized Bed with Heat Pipe-Heat Exchanger as Melting Furnace for Wax 167
- 5.4 INNOVATIVE INDUSTRIAL APPLICATION OF FLUIDIZED BED

COMBUSTOR (MELTING FURNACE) 169

- 5.4.1 Investigation of the Effect of Number of Heat Pipes 171
- 5.4.2 Investigation of the Effect of Filling Ratio 177
- 5.4.3 Investigation of the Effect of Particle Size 181
- 5.4.4 Investigation of the Effect of Fuel Flow Rate (Load Variations) 187
- 5.4.5 Investigation of the Effect of Heat Pipe Working Fluid 191
- 5.4.6 Sample of Main Results 193

CHAPTER (6): CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 195-197

6.1 CONCLUSION 195

6.2 RECOMMENDATIONS FOR FUTURE WORK 197

APPENDIX (A): PROPERTIES OF MATTER 198

A-1 MATERIAL ANALYSIS OF STAINLESS STEEL 316-L 198

Combustor Sector 198

Heat Pipe 198

APPENDIX (B): MEASURING INSTRUMENTATION 199-209

- **B-1 CALIBRATION OF THERMOCOUPLES 199**
- **B-2 CALIBRATION OF FLOW METERS 201**
- **B-3 READ OUT DEVICES 203**
- B-4 ANALYSIS OF THE EXPERIMENTAL ERROR 209

APPENDIX (C): HEAT TRANSFER COEFFICIENT OF THERMAL LOAD 210-213

APPENDIX (D): SOLVED CASE 214-220

REFERENCES 221-229

ملخص

NOMENCLATURE

LIST OF ALPHAPITICAL SYMBOLS

Symbol	Definition	Unit
: A _{cf}	Cross sectional inner flow area of cooling fluid through the heat	m^2
	sink	
A _{eo}	Outer surface area of the evaporator section	m ²
${f A_{flow}}$	Cross sectional inner area of the fluidizing column	m ²
A _{hp1}	Cross sectional inner area of the thermosyphon	m^2
Ar	Archimedes number of the fluidizing particles at fluidization	
	$d_n^3 \rho_\alpha (\rho_n - \rho_\alpha) g$	
	$Ar = \frac{d_p^3 \rho_g (\rho_p - \rho_g)g}{\mu_g^2}$	
A _x	Cross sectional area of the wall of the thermosyphon	m ²
C_1, C_2	Constants of Minimum Fluidization Velocity	
Ccw	Correction factor of cooling water flow meter	:
C_d	Orifice discharge coefficient	
$\mathbf{C_f}$	Correction factor of fuel flow meter	:
Cpa	Specific heat of inlet fluidizing air	J/kg.K
Cpg	Specific heat of the fluidizing gas	J/kg.K
Cp _l	Specific heat of the liquid film	J/kg.K
Cpp	Specific heat of the fluidized particles	J/kg.K
$\mathbf{C}_{\mathbf{w}}$	Specific heat of the cooling fluid	J/kg.K
C_xH_y	Hydrocarbon gaseous fuel	
$\mathbf{D}_{\mathbf{eff}}$	Effective diameter of the fluidizing column	m
$\mathbf{D}_{ ext{bed}}$	Inner fluidizing column diameter	m
d _b	Bubble diameter	m
d _{bm}	Maximum bubble diameter	m
$\mathbf{d}_{\mathbf{bo}}$	Initial bubble diameter	m
d _{hs}	Inside hydraulic diameter of shell	m
$\mathbf{d_{i}}$	Inside diameter of the thermosyphon	m
$\mathbf{d_o}$	Outside diameter of the thermosyphon (immersed tube)	m
d _{orifice}	Orifice inside diameter	m
d _p	Size of fluidized particles	m
$\mathbf{d}_{\mathbf{s}}$	Inside diameter of shell	m
Error F _{Exp}	Error in experimental output result	
:- <u>F</u>	Filling ratio of the thermosyphon	
F _{bf}	View factor between the bed upper surface and the freeboard	
F _{Exp}	Experimental output result	
Fins	View factor of the outer surface of the insulating material to the	•
:	atmosphere	

,	. T	
F _{True}	True experimental result	1/m ² .s
f _b	Bubble frequency Grashoff number for free convection between the outer surface	1/m .s
Gr		
	of the insulating material and the atmosphere	m/s^2
g	Gravitational acceleration = 9.81	,
H _{air}	Enthalpy of the inlet fluidizing air	W
H _{flue}	Enthalpy pf Flue Gases	W
H _{mf}	Minimally fluidized bed height	m
H _o	Static bed height	m
$\mathbf{H_{f}}$	Fluidized bed height	m
h _{atm}	Heat transfer coefficient between the outer surface of the insulating material and the atmosphere	W/m ² .K
h _{be}	Heat transfer coefficient from the fluidized bed to the immersed	$W/m^2.K$
De	tubes (evaporators)	:
$\mathbf{h}_{\mathbf{bw}}$	Heat transfer coefficient between the fluidized bed and	$W/m^2.K$
	fluidizing column	
$\mathbf{h_c}$	Condensation heat transfer coefficient	W/m ² .K
$\mathbf{h}_{\mathbf{cc}}$	Conductive and convective components of the heat transfer	$W/m^2.K$
	coefficient between the fluidized bed and fluidizing column	
$\mathbf{h}_{\mathbf{cond}}$	Conductive component of the heat transfer coefficient from the	W/m ² .K
,	fluidized bed to the immersed tubes (evaporators)	
h _{conv}	Convective component of the heat transfer coefficient from the	W/m ² .K
; ,	fluidized bed to the immersed tubes (evaporators)	
h _e	Evaporation heat transfer coefficient	$W/m^2.K$
\mathbf{h}_{fg}	Latent heat of the thermosyphon working fluid	J/kg
\mathbf{h}_{fi}	Heat of formation of chemical species i	J/kmole
$\mathbf{h}_{\mathbf{rad}}$	Radiative component of the heat transfer coefficient from the	W/m ² .K
, ,	fluidized bed to the immersed tubes (evaporators)	
$\mathbf{h}_{\mathrm{radatm}}$	Radiative Heat transfer coefficient between the outer surface of	W/m ² .K
: - <u>-</u>	the insulating material and the atmosphere	
$\mathbf{h}_{ ext{radw}}$	Radiation component of the heat transfer coefficient between	W/m ² .K
: - <u>-</u>	the fluidized bed and fluidizing column	
h _{sink}	Heat transfer coefficient of heat sink	W/m ² .K
K _p	Equilibrium constant	
L _a	Length of adiabatic section	m
L _c	Length of condenser section	m
Le	Length of evaporator section	m
L _{sector}	Height of the combustion sector = 0.1	m
M_a	Mass flow rate of fluidizing air	kg/s
$\mathbf{M}_{\mathbf{cw}}$	Mass flow rate of the cooling fluid	kg/s
$\mathbf{M_{f}}$	Mass flow rate of fuel	kg/s

,	N	
: N	Number of thermosyphons	<u>-</u>
N _i	Number of atoms of chemical species i	Atoms
Nor	Number of holes in the distributor grid	
Nu _c	Nusselt number of the condensation inside the thermosyphon	:
Nu _e	Nusselt number of the evaporation inside the thermosyphon	
n _i	Number of kmoles of species i	kmoles
. <u>P</u>	Pressure of the working fluid inside the thermosyphon	Pa
P _{atm}	Atmospheric Pressure	Pa
P_{p}	Pressure of the liquid pool inside the thermosyphon	Pa
Pr	Prandtle number for free convection between the outer surface	
	of the insulating material and the atmosphere	
Prg	Prandtle number of fluidizing gas	· · · · · · · · · · · · · · · · · · ·
Pr _l	Prandtle number of the liquid film inside the thermosyphon	
Pr _w	Prandtle number of cooling water	
$\mathbf{P}_{\mathbf{v}}$	Pressure of the vapor inside the thermosyphon	Pa
Q_1	Heat transfer by thermosyphons	W
\mathbf{Q}_2	Heat transfer through fluidizing column	W
Q_3	Energy of Flue Gases	W
$\mathbf{Q}_{ extbf{boiling}}$	Boiling heat transfer limit of thermosyphon	W
Q _{combustion}	Heat liberated from the combustion process	W
$\mathbf{Q}_{ ext{dic}}$	Heat transfer by a direct immersed coil	W
Qdryout	Dryout heat transfer limit of thermosyphon	W
$\mathbf{Q}_{ ext{ent}}$	Entrainment heat transfer limit of thermosyphon	W
\mathbf{Q}_{flue}	Heat transfer with the flow of flue gases	W
Q_{hp1}	Heat transfer by one thermosyphon	W
$\mathbf{Q}_{\mathrm{radgf}}$	Heat transfer by radiation between the fluidizing gas to the inner	W
	surface of the freeboard	
$\mathbf{Q}_{\mathrm{radpf}}$	Heat transfer by radiation between the fluidized particles to the	W
-	inner surface of the freeboard	
Qreaction	Heat liberated from 1 kmoles combustion of fuel	J/kg
Qsonic	Sonic heat transfer limit of thermosyphon	W
Qthermosyphons	Heat transfer by thermosyphons	W
Qunaccounted	Unaccounted heat transfer	W
\mathbf{Q}_{us}	Heat transfer crossing the upper surface of the fluidized bed	W
$\mathbf{Q}_{ ext{viscous}}$	Viscous heat transfer limit of thermosyphon	W
$\mathbf{Q}_{ ext{wall}}$	Heat transfer from the fluidized bed to the fluidizing column	W
$\mathbf{R_1}$	Thermal resistance between the fluidized bed and containing	K/W
	wall	
\mathbf{R}_2	Thermal resistance of the fluidizing column	K/W
R_4	Thermal resistance of the outer surface of the insulating material	K/W

R _{4conv}	Convection component of thermal resistance of the outer surface of the insulating material	K/W
R _{4rad}	Radiative component of thermal resistance of the outer surface of the insulating material	K/W
Ra	Raylaigh number for free convection between the outer surface of the insulating material and the atmosphere	K/W
\mathbf{R}_{air}	Gas constant of air =287.0	J/kg.K
$\mathbf{R_c}$	Total thermal resistance of the direct immersed coil	K/W
R _{c1}	Thermal resistance between the inner surface of the direct immersed coil and the cooling fluid	K/W
R_{c2}	Thermal resistance of the direct immersed coil thickness	K/W
R_{c3}	Thermal resistance between the outer surface of the direct immersed coil and the bed	K/W
Re	Reynolds number at fluidization conditions	
Re_l	Reynolds number of the liquid film inside the thermosyphon	
Re _{mf}	Reynolds number at minimum fluidization $Re_{mf} = \left(\frac{\rho_g U_{mf} d_p}{\mu_g}\right)$	
Re _v	Axial vapor Reynolds number inside the thermosyphon	
Rew	Reynolds number of the cooling fluid through the heat sink	
R_t	Total Thermal Resistance Between The Bed And The Ambient	K/W
T _a	Temperature of inlet fluidizing air	K
T_{atm}	: Atmospheric temperature	K K
$T_{ m bed}$	Fluidized Bed temperature	K K
T _{ci}	Temperature of the inside surface of the condenser of the thermosyphon	K
$T_{coolantin}$	Temperature of the cooling fluid at inlet to the heat sink	K
T _{coolant out}	Temperature of the cooling fluid at outlet from the heat sink	k
T _{eo}	Temperature of evaporator external surface	K
T _{film}	Temperature of the film layer at the outer surface of the insulating material	K
T_{ins}	Temperature of the outer surface of the insulating material	K
T _{is}	Temperature of the outer surface of the immersed surface in the fluidized bed	K
T _p	: Temperature of liquid pool inside the thermosyphon	K
t _{packet}	Packets spending time at the surface of pipe in fluidized bed	S
T_{ref}	Standard reference temperature = 298	K
T _{sat}	Saturation Temperature of Working Fluid	K
T_{sink}	Temperature of the heat sink	K
T_{v}	: Temperature of vapor inside the thermosyphon	K

T_{wi}	Temperature of the inner wall of the fluidizing column	K
$T_{wi,f}$	Temperature of the freeboard inner wall	K
t	time	S
: t _s	Characteristic thermal time for a single solid particle at the	S
:	surface of pipe in fluidized bed	
U	Fluidizing velocity	m/s
$\mathbf{U_b}$	Characteristics bubble velocity	m/s
$\mathbf{U_k}$	Minimum velocity at which transition from bubbling to	m/s
	turbulent regimes	
$\mathbf{U_{mb}}$	Minimum bubbling velocity	m/s
$\mathbf{U}_{\mathbf{mf}}$	Minimum fluidization velocity	m/s
$\mathbf{U}_{\mathbf{ms}}$	Minimum slugging velocity	m/s
$\mathbf{U}_{ ext{terminal}}$	Terminal velocity of the fluidizing particles	
$\mathbf{U_{tr}}$	Minimum vertical transport velocity	m/s
\mathbf{V}_{cw}	Volume of cooling water displaced by cooling water flow meter	m^3
$\mathbf{V_e}$	Evaporator volume of the thermosyphon	m^3
$\mathbf{V_f}$	Volume of fuel displaced by fuel flow meter	m^3
$\mathbf{V_t}$	Thermosyphon volume	m^3
Z	Axial direction of bed centerline	
\mathbf{z}_1	Thermal resistance of bed to evaporator external surface	K/W
Z ₁₀	Thermal axial resistance of the thermosyphon wall	K/W
\mathbf{z}_2	Thermal resistance of the evaporator wall	K/W
\mathbf{z}_3	Thermal resistance of evaporator film	K/W
$\mathbf{z}_{3\mathrm{f}}$	Thermal resistance of evaporating film	K/W
Z 3p	Thermal resistance of nucleate boiling	K/W
Z ₄	Thermal resistance of vapor-liquid interface resistance at the	K/W
:	evaporator	
Z 5	Thermal resistance of vapor pressure drop resistance	K/W
Z ₆	Thermal resistance of vapor-liquid interface resistance at the	K/W
<u></u>	condenser	
z ₇	Thermal resistance of the condenser film	K/W
. Z 8	Thermal resistance of the condenser wall	K/W
Z 9	Thermal resistance of sink to condenser external surface	K/W
$\mathbf{z}_{\mathbf{a}}$	Number of fluidizing air kmoles	kmoles
$\mathbf{z}_{\mathbf{t}}$	Equivalent total thermal resistance of thermosyphon	K/W

LIST OF GREEK AND SPECIAL SYMBOLS

	LIST OF GREEK AND SPECIAL SYMBOLS	
Symbol	Definition	Unit
Δ_1	Thickness of the fluidizing column	m
Δ_2	Thickness of the insulating material	m
$\Delta h_{ m orifice}$	Manometer pressure difference across the orifice	m
ΔPgas	Pressure drop due to fluidizing gas weight	Pa
ΔP_{mf}	Pressure drop of minimally fluidized bed	Pa
$\Delta P_{particles}$	Pressure drop due to fluidized particles weight	Pa
ΔP_{wall}	Pressure drop due to friction at bed walls	Pa
ΔT_{hp}	Temperature difference across thermosyphon	K
ρ _{air}	Density of air upstream orifice	kg/m ³
ρ_{cw}	Cooling water density	kg/m ³
$\rho_{\rm f}$	Fuel density	kg/m ³
ρ _{film}	Density of the film layer at the outer surface of the insulating material	kg/m ³
ρ _g	Density of fluidizing gas	kg/m ³
ρ_{Hg}	Density of mercury =13600.0	kg/m ³
ρ_l	Density of the liquid film	kg/m ³
$\rho_{\rm p}$	Density of fluidizing particles	kg/m ³
$\rho_{\rm v}$	Density of the vapor film	kg/m ³
$\lambda_{ m bed}$	Thermal conductivity of the container wall material	W/m.K
λ_{eff}	Effective thermal conductivity of the dense phase	W/m.K
λ_{film}	Thermal conductivity of the film layer at the outer surface of the insulating material	W/m.K
λ_{g}	Thermal conductivity of fluidizing gas	W/m.K
λ_{ins}	Thermal conductivity of the insulating material	W/m.K
λ_1	Thermal conductivity of the liquid film	W/m.K
λ_{p}	Thermal conductivity of fluidizing particles	W/m.K
λ_t	Thermal conductivity of the thermosyphon material	W/m.K
$\lambda_{\rm w}$	Thermal conductivity of the cooling fluid	W/m.K
μ _{film}	Dynamic viscosity of the film layer at the outer surface of the insulating material	Pa.s
μ _ε	Dynamic viscosity of fluidizing gas	Pa.s
μι	Dynamic viscosity of the liquid film	Pa.s
$\mu_{\rm v}$	Dynamic viscosity of the vapor film	Pa.s
$\mu_{\rm w}$	Dynamic viscosity of the cooling fluid	Pa.s
. ε _b	: Bubble voidage	
· P		

y of bed material ty of the evaporator external surface	
ty of the evaporator external surface	::
	:
ty of the freeboard inner wall	:
ty of the fluidizing gas	:
ty of the outer surface of the insulating material	:
y of the outer immersed surface in the fluidized bed	<u>:</u>
ge at minimum fluidization	<u>:</u>
ivity of the bed	
voidage	:
ed voidage	:
ty of fluidizing particles	:
y of the inner Wall of Fluidizing Column	
ension of the working fluid	<u>:</u>
Boltzmann constant for radiative heat transfer	W/m2.K ⁴
ariable	
m thickness inside the thermosyphon	m
ess between a falling liquid film and a countercurrent	N/m ²
v inside the thermosyphon	:
nsional liquid-vapor interfacial shear stress inside the	
ohon	: :;
	:
viscosity of the liquid inside the thermosyphon	:
nsional liquid-vapor interfacial shear stress inside the	

Abbreviations

HP-HE: Heat Pipe-Heat Exchanger LPG: Liquefied Petroleum Gas

AFBC: Atmospheric fluidized bed combustor PFBC: Pressurized fluidized bed combustor CFBC: Circulating fluidized bed combustor

ACFBC: Atmospheric circulating fluidized bed combustor PCFBC: Pressurized circulating fluidized bed combustor

TDF: Tire derived fuel RDF: Refuse derived fuel M.I.G.: Metal inert gas

H.T.L.R.: Heat Transfer Limit Ratio Defined as:

Heat Transfer by 1 Heat Pipe/Minimum Heat Transfer Limit of the Heat Pipe

List of Figures

Fig.	Title	P.
2.1	THE PHENOMENON OF FLUIDIZATION	21
	(a) STATIC BED; (b) FLUIDIZED BED	
2.2	ILLUSTRATION OF BED PRESSURE DROP VERSUS SUPERFICIAL VELOCITY	24
2.3	SCHEMATIC DIAGRAM SHOWING THE MAIN VISUAL FEATURES FOR	25
	DIFFERENT REGIMES	
2.4	AFBC IN RANKINE CYCLE APPLICATION	42
2.5	VERTICAL FIRE-TUBE BOILER FOR 3.5 MW UNIT	42
2.6	HORIZONTAL FIRE TUBE BOILER	43
2.7	STONE- PLATT FLUIDFIRE	43
2.8	PFBC IN COMBINED BRAYTON-RANKINE CYCLE APPLICATION	43
2.9	OPERATION OF CFBC	44
2.10	CFBC BOILER SCHEMATIC OF AHLSTROM PYROFLOW	45
2.11	COMPACT CFBC BOILER SCHEMATIC OF AHLSTROM PYROFLOW	45
2.12	CFBC BOILER SCHEMATIC OF LURGI	46
2.13	SIMPLIFIED PROCESS FLOW DIAGRAM OF THE AHLSTROM PYROFLOW	46
	PCFBC	
2.14	COMBINATIONS OF HEAT TRANSFER METHODS FROM FLUIDIZED BED	47
	COMBUSTOR-BOILER	
2.15	ZONES OF GAS AND SOLIDS MOTION AROUND A HORIZONTAL TUBE IN A	49
	BUBBLING FLUIDIZED BED AT MODEST GAS FLOW RATES	
2.16	A: FIRST HEAT PIPE TYPE DEVICE, "PERKINS TUBE"	50
	B: THERMOSYPHON HEAT EXCHANGER	
2.17	GRAVITY ASSISTED CLOSED TWO-PHASE THERMOSYPHON	51
2.18	TYPICAL OPERATING RANGE FOR THERMOSYPHON WORKING FLUIDS	75
2.19	CONFIGURATION OF THE SYSTEM	77
2.20	PURPOSES OF THE EXPERIMENTAL TEST RIG	a 80
		b 81
		c 82
3.1	CLASSICAL TWO-PHASE FLUIDIZATION MODEL	88
3.2	THERMAL RESISTANCES NETWORK OF HEAT PIPE	92
3.3	SIMPLIFIED THERMAL RESISTANCES NETWORK OF HEAT PIPE	93
3.4	THERMAL RESISTANCES NETWORK OF CONTAINING WALL	101
4.1	SINGLE LINE LAYOUT OF COMPLETE TEST RIG	111
4.2	PHOTOGRAPHIC AND SCHEMATICAL REPRESENTATION OF THE FLUIDIZED	113
	BED COMBUSTOR	
4.3	PHOTOGRAPHIC OF THE STEEL BALLS LAYER	114
4.4	PORT OF FLUIDIZING GAS ENTRANCE (1) AND FLUIDIZING GAS DIVERGENT	116
4.5	PATH (23)	116
4.5	MEASURING RING (25)	116
4.6	FLUIDIZING GAS PLENUM (26)	117
4.7	LOWER COMBUSTOR SECTOR (28) AND SIGHT GLASS (27)	117
4.8	COMBUSTOR SECTOR (29)	118

4.9	LOCATIONS OF MEASURING SETS FOR FLUIDIZED BED COMBUSTOR	119
4.10	PHOTOGRAPH OF PRESSURE PROBES THROUGH THE FLUIDIZED BED COMBUSTOR	120
4.11	THERMOCOUPLE CONSTRUCTION FOR THE FIRST GROUP	121
4.12	A: T ₁₂ , T ₇ , T ₈ AND T ₉ INSTALLATION	121
	B: T ₁₂ , T ₁₁ AND T ₁₀ INSTALLATION	122
4.13	SPINDLE SCREW MECHANISM FOR T ₁₉	122
4.14	SCHEMATIC REPRESENTATION OF THE GAS SAMPLING PROBE	123
4.15	SCHEMATIC REPRESENTATION AND PHOTOGRAPHIC OF THERMOSYPHON	125
4.16	A: SECOND PREPARATION KIT-SCHEMATIC REPRESENTATION OF	126
	THERMOSYPHON FITTED BY ONE-WAY CHRAGING NEEDLE VALVE	
	B: SECOND PREPARATION KIT- PHOTOGRAPHIC VIEW OF 5 THERMOSYPHON	
	FITTED BY ONE-WAY CHRAGING NEEDLE VALVE	
4.17	A: SCHEMATICAL REPRESENTATION OF THE EVACUATION RIG	129
	B: PHOTOGRAPHIC VIEW OF THE EVACUATION RIG	129
	C: SCHEMATICAL REPRESENTATION OF THE CHARGING RIG	130
	D: PHOTOGRAPHIC VIEW OF THE CHARGING RIG	130
	E: PHOTOGRAPHIC VIEW OF THE SCALED BOTTEL AND DRAWING PROCESS	131
4.18	LAYOUT OF THE HEAT SINK SECTION	132
4.19	HEAT SINK WITH AND WITHOUT INSULATING MATERIAL	133
4.20	INLET AND OUTLET TEMPERATURE MEASURING POINTS	133
	$(T_{17} \text{ AND } T_{18}).$	
4.21	SEALED LOCKING NUTS (31)	134
4.22	A: PHOTGRAPHIC OF ASSEMBLED TEST RIG	134
	B: PHOTGRAPHIC OF ASSEMBLED TEST RIG	135
	C: PHOTGRAPHIC OF ASSEMBLED TEST RIG	135
4.23	WIRING CIRCUIT OF 23 THERMOCOUPLES	136
4.24	WIRING CIRCUIT OF THERMOCOUPLE NO. 19	137
4.25	EXPERIMENTAL MEASUREMENTS OF BOTH THE FLUIDIZED BED AVERAGE	138
	TEMPERATURE, AVERAGE HEIGHT, AND GAS ANALYSIS FOR COMBUSTION	
	STUDY	
4.26	EXPERIMENTAL MEASUREMENTS OF BOTH THE FLUIDIZED BED AVERAGE	140
	TEMPERATURE AND AVERAGE HEIGHT FOR HEAT TRANSFER STUDY	
4.27	DETERMINATION OF THE AVERAGE FLUIDIZ ED BED HEIGHT	141
5.1	THEORETICAL-EXPERIMENTAL BED TEMPERATURE	149
	FOR DIFFERENT PARTICLE SIZES	
5.2	THEORETICAL-EXPERIMENTAL FLUIDIZED TO STATIC BED HEIGHT FOR	149
	DIFFERENT PARTICLE SIZES	
5.3	THEORETICAL-EXPERIMENTAL VOLUMETRIC PERCENTAGE OF O2 IN	149
	COMBUSTION PRODUCTS FOR DIFFERENT PARTICLE SIZES	
5.4	THEORETICAL-EXPERIMENTAL VOLUMETRIC PERCENTAGE OF CO2 IN	150
	COMBUSTION PRODUCTS FOR DIFFERENT PARTICLE SIZES	
5.5	THEORETICAL-EXPERIMENTAL VOLUMETRIC PERCENTAGE OF CO IN	150
	COMBUSTION PRODUCTS FOR DIFFERENT PARTICLE SIZES	
5.6	THEORETICAL-EXPERIMENTAL BED TEMPERATURE	152
	FOR DIFFERENT STATIC BED HEIGHTS	į