CLINICAL SPECTRUM OF ACUTE RESPIRATORY DISTRESS SYNDROME IN PEDIATRIC INTENSIVE CARE UNIT IN A TERTIARY SETTING

THESIS

Submitted For Partial Fulfillment of Requirements
For The Doctorate Degree In
Pediatrics

By **Basant Salah Saad Meligy**(MBBCH. MSc)

Faculty of Medicine - Cairo University

Supervised by

Prof. Dr. Ahmed Saad Al Deen Al Beleidy

Prof. of pediatrics Faculty of Medicine - Cairo University

Prof. Dr. Mohamad A. Badawi

Prof. of Pediatrics
Faculty of Medicine - Cairo
University

Prof. Dr. Mohamed Hesham Sayed Ahmed

Prof. of Pediatrics Faculty of Medicine - Cairo University

Department of Pediatrics- Faculty of Medicine Cairo University 2007

Abstract

Introduction

Acute respiratory distress syndrome (ARDS) is a severe clinical syndrome of acute lung injury, noncardiogenic pulmonary edema and severe hyopxia. There are no reports on the magnitude of problem of this entity and its predisposing causes in the pediatric age group in Egypt. The present study was undertaken to examine the pattern of ARDS in a pediatric intensive care unit (PICU).

Patients and methods

This research follows cohort analytical study design, 20 pediatrics hypoxic patients needing mechanical ventilation constituted the study group. The records of the children admitted to PICU from January 2004 to January 2007 were reviewed.

Results

Based on the results of the present study, the following can be concluded: 1)The incidence rate of ARDS in the PICU is 13.9 /1000 admissions. 2)The most common cause of ARDS was due to direct lung injury due to pneumonia. 3) Morality rate was 85%, mostly due to respiratory failure.

Recommendations.

Based on the results of the present study further studies are recommended to study the incidence pattern of ARDS in other PICUS in Egypt

Key words:

Acute lung injury; ARDS; incidence; pediatric; clinical spectrum.

ACKNOWIEDGENIENT

Thanks to Great Almighty and Merciful God for giving me the strength and ability to accomplish this work.

I would like t express my deepest gratitude to *Professor Dr. Ahmed Al Beliday* for his continuous supervision and instructive advice. Many thanks to his experienced guidance and encouragement that helped me along the way.

I pay great tribute to the late *Prof Dr Mohamed Badawey* who gave me a great hand in accomplishing this work. We would always like to keep on his track and follow his footstep.

I am indebted to *Professor Dr Mohamed Hesham* for his broad heart and mind and his support and guidance, who devoted much of his precious time, effort and generous advice for the completion of this work.

Lastly I would like to thank my family without whom I would have never been able to devotedly finish this work

CONTENTS

	Page
INTRODUCTION AND THE AIM OF WORK	1
REVIEW OF THE LITERATURE	
Definition of ARDS	3
Incidence of ARDS	12
Clinical Spectrum of ARDS	15
Risk factors	
Clinical diagnosis	
Differential diagnosis of ARDS	
The course of the disease	
Sequlae	
Outcome	
Investigations used in clinical evaluation	28
Histopathology	
Pathogenesis of acute lung injury	62
Treatment of ARDS	63
Respiratory mechanics	67
Ventilatory management of pediatric ARDS	83
Adjunct ventilatory strategies of ARDS	88
Non-ventilatory strategies of ARDS	96
Experimental treatment	
PATIENTS AND METHODS	101
RESULTS AND ANALYSIS OF DATA	107
DISCUSSION	118
CONCLUSIONS	132
RECOMMENDATIONS	133
SUMMARY	134
REFERENCES	135
ANNEXES	
ARABIC SUMMARY	

<u>List of figures</u>

REVIEW OF LITERATURE	Page
Fig. (1): Chest X ray in patient with ARDS	30
Fig. (2):Acute respiratory distress syndrome after a road-traffic accident	31
Fig. (3): CT of ARDS patient	34
RESULTS ANDANALYSIS OF DATA	
Fig. (4): Sex distribution among the studied patients	100
Fig. (5): Percentage proportion of the predisposing causes of ARDS	102
Fig. (6) Mechanism of lung injury in the patient under study (direct or indirect)	103
Fig. (7): Underlying illness existing before development of ARDS	104
Fig. (8): The mortality rate among the study subjects	106

List of tables

REVIEW OF LITERATURE	Page
Table (1)Lung injury score	6
Table (2) Definition of acute lung injury (ALI) and the acute	
respiratory distress syndrome (ARDS) according to 1994	7
consensus conference	
Table (3) Delphi definition of ARDS	10
Table (4) Acute noninfectious diffuse parenchymal lung	
disease and their underlying histology, etiology and BAL	37
cellular content	
Table (5) Common measures of disease severity in acute lung	54
injury	
PATIENTS AND METHODS	
Table (6) Normal and lower limits of systolic blood pressure	95
by age	75
RESULTS AND ANALYSIS OF DATA	
Table (7) Sex distribution among the studied patients	99
Table (8) Percentage proportion of the predisposing causes of	101
ARDS	101
Table (9) Underlying illness existing before development of	104
ARDS	
Table (10) Ventilator settings among the study subjects	105
Table (11) Oxygen indices during mechanical ventilation in	105
ARDS patients	
Table (12) The mortality rate in the study subjects	102
Table (13) Relationship between the outcome and other	106
variables	100

LIST OF ABBREVIATIONS

ABC Airway, Breathing, Circulation ABMA Anti-Basement Membrane Anti body **ACE** Angiotensin Converting Enzymes **AEP** Acute eosinophilic pneumonia AHRF Acute Hypoxemic Respiratory Failure **AIP** Acute interstitial pneumonia ALI Acute Lung Injury APACHE Acute Physiologic and Chronic Health Evaluation ARDS Acute Respiratory Distress Syndrome ARDS_{exp} Extrapulmonary Acute Respiratory Distress Syndrome ARDS_p BAL Bronchoalveolar Lavage **BALF** Bronchoalveolar Lavage Fluid BOOP Bronchiolitis obliterans organizing pneumonia CaO_2 **Arterial Oxygen Content CNS** Central Nervous System CO Cardiac output COX-2 Cyclo-Oxygenase-2 CT Computed Tomography CVD Collagen Vascular Disease DAD Diffuse Alveolar Damage DO_2 Oxygen Delivery DAH Diffuse alveolar hemorrhage DIC Disseminated Intravascular Coagulation **ECM** Extracellular Matrix **ECMO** Extracorporeal Membrane Oxygenation **ETs** Endothelins FACTT Fluid and Catheter Therapy Trial **FDP** Fibrin Degeneration Product FIO₂ Fraction of Inspired Oxygen **FRC Functional Residual Capacity GALT** Gut-Associated Lymphoid Tissue G-CSF Granulocyte-Colony Stimulating Factor HDR Host Defense Response HFOV High Frequency Oscillatory Ventilator HP Hypersensitivity pneumonitis **HPV** Hypoxic Pulmonary Vasoconstriction

I:E

Inspiration to Expiration

IEDs Immune-enhanced diets

IL-1 Interleukin-1

iNO Inhaled Nitric Oxide

IRV Inverse Ratio Ventilation

LIS Lung Injury Score

LTs Leukotrienes

MAP Mean Airway Pressure

MODS Multiple Organ Dysfunction Syndrome

MOFS Multiple Organ Failure Syndrome

NAC N- acetylcysteine

NADPH Nicotinamide Adenine Dinucleotide Phosphate NAECC North American European Consensus Conference

NHLBI National Heart, Lung, and Blood Institute

NNIS National Nosocomial Infection Surveillance System

NO Nitric Oxide

NP Nosocomial Pneumonia

N-PCP-III N-Terminal Procollagen Peptide-III

PAF Platelet-Activating Factor

PaCO₂ Partial Pressure of Carbon Dioxide

PaO₂ Partial Pressure of Oxygen

PAWP Pulmonary Artery Wedge Pressure

PCIRV pressure-controlled inverse ratio ventilation

PEEP Positive End Expiratory Pressure

PEEPi Intrinsic PEEP PG Prostaglandin

PICU Pediatric Intensive Care Unit PIP Peak Inspiratory Pressure

PMN Polymorphonuclear leukocytes

PRISM Pediatric Risk of Mortality
PSB Protected Specimen Brush
RCT Randomized Control Study
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species

SaO₂ Arterial Oxygen Saturation

SIRS Systemic Inflammatory Response Syndrome

SOFA Sequential Organ Failure Assessment s

TGF- β Transforming Growth Factor $-\beta$

TGF Expression of Transforming Growth Factor

TNF-α Tumor Necrosis Factor-Alpha

TRALI Transfusion-Related Acute Lung Injury

TX Thromboxane

uPA Urokinase Plasminogen Activator

VC-IRV Volume-Controlled Inverse Ratio Ventilation

VILI Ventilator-Induced Lung Injury

V/Q Ventilation Perfusion Ratio

WBCs White Blood Cells

INTRODUCTION AND AIM OF WORK

Acute respiratory distress syndrome (ARDS) is an acute form of severe alveolar-capillary injury that evolves after a direct or indirect lung insult. It begins as noncardiogenic pulmonary edema. Mortality remains high among children with ARDS, particularly when serious underlying conditions co-exist, sepsis occurs, and when there is multi-organ failure. (*Redding*, 2001)

The American European Consensus Conference on ARDS, 1994 was convened to bring clarity and uniformity to the definition of acute lung injury (ALI) and ARDS. The Conference defined ALI as the acute onset of bilateral infiltrates on chest radiograph without evidence of left atrial hypertension and with a partial pressure of oxygen (Pa_{O2})/fraction of inspired oxygen (FI_{O2}) ratio of less than 300 and ARDS as the acute onset of bilateral infiltrates without left atrial hypertension and a Pa_{O2}/FI_{O2} ratio of less than 200. The Consensus included a return to the use of acute rather than adult as an acknowledgment that ARDS is not limited to the adult population. (*Artigas et al*, 1994)

Despite a large number of initiating factors, the pathophysiologic events are similar: pulmonary hypertension, intra-pulmonary shunting with severe hypoxemia and myocardial dysfunction. This syndrome was first described in adults and is now increasingly being recognized in children. (*Lodha et al*, 2001)

ALI and ARDS are rare diseases in pediatric intensive care unit with a high mortality. (*Dahlem et al, 2003*)

Flim of work

The aim of work is to identify the clinical spectrum of the acute respiratory distress syndrome in pediatric intensive care unit. This included; incidence, risk factors, prognostic factors, mortality rate and giving particular attention to the changes in pulmonary gas exchange and hemodynamics and to other organ dysfunction among ARDS pediatric patients to develop more effective ventilator effective strategies.

Definition of Acute respiratory distress syndrome

Acute respiratory distress syndrome (ARDS) is a syndrome and not a specific pathophysiologic disease. Therefore, patients are determined to have ARDS when they meet specific diagnostic criteria. Since the initial description of ARDS investigators have made several attempts to refine these criteria. (Silverboard et al, 2003)

The concept of acute respiratory failure could develop as consequence of certain non-pulmonary conditions was not new in 1967. Since the World War II, the occurrence of severe pulmonary dysfunction has been noted in soldiers suffering from non-thoracic trauma. The terms "wet lung' or "Da Nang lung" have been applied to the development of acute pulmonary edema following severe injury received combat. The syndrome achieved during widespread recognition during the Viet Nam War, when the first time effective field resuscitation and rapid evacuation to hospitals permitted the survival for severely injured well hydrated patients who would have died in earlier wars. In 1992, the term "acute respiratory distress syndrome" replaced "adult respiratory distress syndrome" the syndrome can occur in children, although it is much less common in children than adults. (Russell et al, 1999)

In 1967 Ashbaugh and colleagues described a clinical syndrome of tachypnoea, hypoxaemia resistant to supplemental oxygen, diffuse alveolar infiltrates, and decreased pulmonary compliance 12 patients who required positive pressure mechanical ventilation. The onset of the syndrome was acute, typically within hours of the inciting clinical disorder. The majority of patients did not have a history of disease. Adequate oxygenation required the of continuous positive pressure with end expiratory pressures (PEEP) of The 5-10 H₂O. earliest radiographic findings infiltrates indistinguishable from cardiogenic pulmonary edema that usually became confluent with progressive clinical deterioration.

(Ashbaugh et al, 1967)

Post mortem examination of the lungs of seven of them revealed atelectasis, vascular congestion and hemorrhage, severe pulmonary edema and hyaline membranes. Shortly afterwards, Petty and Ashbaugh called this constellation of findings adult respiratory distress syndrome (adult RDS). (*Petty and Ashbaugh*, 1971)

Since then, adult RDS has been recognized globally as an entity and been the subject of considerable academic activity, revealing a wealth of information about the clinical features, physiological disturbances, prognosis and pathology of adult RDS. (*Artigas*, 2002)

However the criteria for diagnosing ARDS lacked uniformity and raised concern that the requirement for a pulmonary artery catheter may significantly delay the diagnosis of ARDS and delay the initiation of therapy. (*Silverboard et al, 2003*)

The definition was not sufficiently specific, was open to varying interpretations, and did not require the clinical etiology of the syndrome to be specified. Investigators used different criteria to enroll patients in clinical studies making comparison of results across trials difficult. (*Atabai and Matthay*, 2002)

In **1988 Murray and colleagues** introduced the lung injury score (LIS) to provide more specific and rapidly diagnostic criteria (Table.1). In the setting of identifiable causes of lung injury, this 4-component score included: ratio of PaO₂/FiO₂, the number of quadrants with alveolar consolidation seen on a frontal chest radiograph, the amount of positive and-expiratory pressure (PEEP), and a measure of static respiratory system compliance for ventilated patients. (*Murray et al*, 1989)

However the 4-point chest radiograph scoring system could introduce significant variation in radiographic interpretations, and thereby change the overall Lung Injury Score, depending on which radiologist interpreted the film. Also the inclusion of PEEP in the scoring system might create variability secondary to difference in utilization of PEEP by the physician in charge. A modified lung injury score is created based on only two criteria a) chest radiographic abnormalities; and b) hypoxemia. (*Moss et al, 1995*)