

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Ain Shams University
Faculty of Engineering
Department of Design and Prodution Engineering

EFFECT OF LEARNING ON LOT SIZING

B7081

THESIS

Submitted for the Partial Fulfillment of

M.Sc.Degree

in

Mechanical Engineering

(Production)

By Eng. Abdel-Rahman I. Abdel-Bary

Supervised by
Prof. Salah E.Z.Abdel-Barr
Dr. Nahed S.A. Mohamed
Faculty of Engineering
Ain Shams University
Cario Egypt

Cairo 1997

15 HA DILW

Instruction of the second seco

The state of the s

Gentle in

nt gri

STATEMENT

This dessertation is submitted to Ain Shams university for the degree of M.Sc. in Mechanical Engineering (Production).

The work included in this thesis was carried out by the auther in the Departement of Production, from 1995 to Nov. 1997.

No part of this thesis has been submitted for a degree or a qualification at any other university or insituation.

Date : 1/11/1997

Signature: Abdel Bany

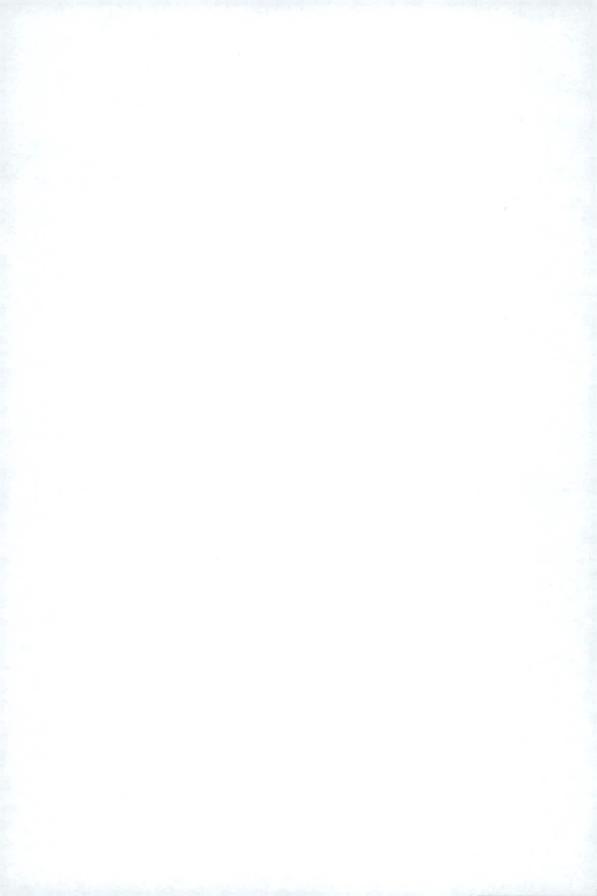
Name : Abdel-Rahman Abdel-Bary

HMOD 0.121.1 LISTER SULTAIN. TO DETINE The HT AMBITA 1 1.1 1.2 151 5€. 8.1 1.8.1 1.1 13.2

O.

) 1.1

CONTENTS


		PAGE
CONT	í	
LIST (iv	
LIST (vi	
SUMN	vii	
INTRO	1	
	TER 1: RATURE REVIEW	
1.1	Introduction	4
1.2	Types of Learning and Remission	4
1.2.1	Threshold learning	4
1.2.2	Reinforcement learning	5
1.2.3	Learning curves	6
1.2.4	Remission	9
1.3	Effect of Learning on Lot Size Determination	12
1.3.1	Effect of process learning on optimal lot size	12
1.3.2	Effect of setup learning on optimal lot sizes	19
1.3.2.1	Effect of setup learning on optimal lot sizes	
	with constant demand	19
1.3.2.2	Effect of setup learning on optimal lot sizes	
	with variable demand	21
CHAP		
	CITATED LOT SIZING PROBLEM UNDER	
LEAR	NING EFFECT (SINGLE PRODUCT CASE)	
2.1	Introduction	26
2.2	Capacity Constrained Lot sizing Problem	
	with Process Learning	26
221	Model formulation	27

2.2.2	Model solution	29
2.2.2.1	Nonlinear integer programming	29
2.2.2.2	Linear approximation	29
2.2.2.3		30
2.2.3	Learning effects on optimal schedule	40.31
2.3	Capacitated Lot Sizing Problem Under	1.174
	Setup Learning	31
2.3.1	Model formulation	32
2.3.1.1	Model with no learning	
2.3.1.2	Model with learning	. ,34
2.3.2	Solution techniques	35
2.3.2.1	Planning with setup learning heuristic algorithm (PSL	
2.3.2.2	Efficiency and effectiveness of the PSL heuristic	41
CHAPT CAPAC LEARN	TER 3: CITATED LOT SIZING PROBLEM UNDER NING EFFECT (MULTI PRODUCT CASE)	
3.1	Introduction	42
3.2	Model Formulation	43
3.2.1	Model With no learning	43
3.2.2	Model With learning	44
3.3	Solution Technique	45
СНАР	ΓER 4:	
	TS AND DISCUSSIONS	
4.1	Introduction	52
4.2	Capacitated Lot Sizing Problem under Setup Learning (Single Product Case)	53
4.2.1	The effect of setup learning on optimal schedules	53
4.2.2	The effect of setup learning on production costs	66

4.3	Capacitated Lot Sizing Problem under	
25	Setup Learning (Multi Product Case)	82
CHAP	TER 5:	
CONC	LUSIONS	90
REFE	RENCES	93
APPE	NDICES:	
APPEN	IDIX (I)	96
5 ()	Transformation of the mathematical model	
APPEN	IDIX (II)	
1	a- Computer program for single product case	98
	b- Computer program for multi product case	110

£ 1. £ 1.

2 (.

LIST OF TABLES

TABLE	TITLE	PAGE
	SINGLE PRODUCT CASE:	
-1	DATA FOR THE TEST PROBLEM	54
2	THE OPTIMAL PRODUCTION SCHEDULES	
	AT $S/H = 250$, $A = 90$	57
3	THE OPTIMAL PRODUCTION SCHEDULES	
	AT $S/H = 550$, $A = 90$	61
4	THE OPTIMAL PRODUCTION SCHEDULES	
	AT $S/H = 250$, $A = 110$	64
5	THE PRODUCTION COSTS AT S/H = 100	67
6	THE PRODUCTION COSTS AT S/H = 250	71
7	THE PRODUCTION COSTS AT S/H = 400	74
8	THE PRODUCTION COSTS AT S/H = 550	77
9	THE PRODUCTION COSTS AT S/H = 700	79
	MULTI PRODUCT CASE	
10	DATA FOR THE TEST PROBLEM (TWO PRODUCTS)	83
11	DATA FOR THE TEST PROBLEM (FOUR PRODUCTS)	83
	PRODUCTION SCHEDULES AND PRODUCTION COSTS A	Т;
12	LEARNING RATE (B) = 1.0 AND CAPACITY (A) = 150	85
13	LEARNING RATE (B) = 0.7 AND CAPACITY (A) = 150	86
14	LEARNING RATE (B) = 1.0 AND CAPACITY (A) = 200	87
15	LEARNING RATE (B) = 0.7 AND CAPACITY (A) = 200	89

LIST OF FIGURES

ı	FIGUI	RE TITLE	PAGE
CHAPTER1:			
	1.1	LEARNING CURVE MODELS	8
	1.2	EFFECT OF BREAKS ON LEARNING CURVE	11
	1.3	RELATION BETWEEN THE STOCK ON	
		HAND AND THE TIME	15
CHAPTER2:			
	2.1	FLOWCHART FOR THE PSL HEURISTIC	
		(SINGLE PRODUCT CASE)	38
CHAPTER3:			
	3.1	FLOWCHART FOR THE PSL HEURISTIC	
		(MULTI PRODUCT CASE)	48
CHAPTER4:			
	4.1	PRODUCTION SCHEDULES AT	
		(S/H = 250 , A = 90)	58
	4.2	PRODUCTION SCHEDULES AT	
		(S/H = 550 , A = 90)	62
	4.3	PRODUCTION SCHEDULES AT	
		(S/H = 250, A = 110)	65
	4.4	PRODUCTION COSTS AT S/H = 100	68
	4.5	PRODUCTION COSTS AT S/H = 250	72
	4.6	PRODUCTION COSTS AT S/H = 400	75
	4.7	PRODUCTION COSTS AT S/H = 550	78
	4.8	PRODUCTION COSTS AT S/H = 700	80