

Effect of interface position with different concrete compressive strength and shear connector shapes on the behavior of one-way composite pre-slabs

BY

ENG. AHMED ADEL ALY AFIFI

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Effect of interface position with different concrete compressive strength and shear connector shapes on the behavior of one-way composite pre-slabs

BY

ENG. AHMED ADEL ALY AFIFI

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Under the Supervision of

PROF. DR.
MOHAMED EL-SAID ISSA
Professor of Reinforced concrete
Faculty of Engineering
Cairo University

PROF. DR.
MOHAMED TALAT MOSTAFA
Professor of Reinforced concrete
Faculty of Engineering
Cairo University

PROF. DR.
MOHAMED RABIE MAHMOUD
Professor of Reinforced concrete
Faculty of Engineering
Cairo University

ASS.PROF. DR.
SHERIF AHMED MOSTAFA
Associate Professor
Faculty of Engineering
October 6 University

Effect of interface position with different concrete compressive strength and shear connector shapes on the behavior of one-way composite pre-slabs

BY ENG. AHMED ADEL ALY AFIFI

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In STRUCTURAL ENGINEERING

Approved by the Examining Committee:

Prof.Dr. Mohamed El-Said Issa,	Main Advisor
Prof.Dr. Mohamed Talat Mostafa,	Member
Prof.Dr. Mohamed Rabie Mahmoud,	Member
ASS.Prof.Dr. Sherif Ahmed Mostafa, Associate prof. Faculty of Engineering, October 6 University	Member
Prof.Dr. Mostafa Foaad El Kafrawy,	Internal Examiner
Prof.Dr. Amr H. Abdel-azim Zaher, Professor of Reinforced Concrete, Faculty of Engineering, Ai	External Examiner n-Shams University

CAIRO UNIVERSITY, FACULTY OF ENGINEERING GIZA, EGYPT 2016 **Engineer:** Ahmed Adel Aly Afifi

Date of Birth: 27 / 5 / 1980 **Nationality:** Egyptian

E-mail: A7med_Afifi@yahoo.com

Phone: 01001566606

Address: Villa (8) El-wrood street 6 October city

Registration Date: 1 / 10 / 2009 **Awarding Date:** / / 2016

Degree: PH.D

Department: Structural Engineering

Supervisors: Prof. Dr. Mohamed El-Said Issa

Prof. Dr. Mohamed Talat Mostafa**Prof. Dr.** Mohamed Rabie Mahmoud

Ass. Prof. Dr. Sherif Ahmed Mostafa – October 6

University

Examiners:

Prof. Dr. Mohamed El-Said IssaProf. Dr. Mohamed Talat MostafaProf. Dr. Mohamed Rabie Mahmoud

Ass. Prof. Dr. Sherif Ahmed Mostafa – October 6

University

Prof. Dr. Mostafa Foaad El Kafrawy

Prof. Dr. Amr H. Abdel-azim Zaher – Ain-Shams

University

Title of Thesis:

"Effect of interface position with different concrete compressive strength and shear connector shapes on the behavior of one-way composite pre-slabs"

Key Words: (Composite, Interface, Shear connector, Pre-slabs)

Summary:

Composite pre-slabs are one of the most common types of composite elements. There are many factors effected in the behavior of the pre-slab, the main governing factor is the shear transfer along the interface to achieve the composite action between the two layers. This research presents as investigation of one-way composite pre-slabs behavior for many specimens have a different interface positions with two alternative concrete compressive strengths and different shapes of shear connector.

ACKNOWLEDGEMENTS

The writer wants to express his deepest thanks to **Prof. Dr. MOAHMED EL-SAID ISSA**, Professor of Reinforced concrete, Faculty of Engineering, Cairo University for his constant supervision, planning, guidance, valuable suggestions, precise advice and for being like a father during all faces of this research work.

The writer wishes to express his sincere appreciation to **Prof. Dr. MOHAMED TALAT MOSTAFA,** Professor of Reinforced concrete, Faculty of Engineering, Cairo University, for his kind and constant supervision, for his sincere help, encouragement, and cooperation to the fullest degree during all phases of his work.

The writer wishes to express his deepest gratitude and appreciation to **Prof. Dr. MOHAMED RABIE MAHMOUD,** Professor of Reinforced concrete, Faculty of Engineering, Cairo University, for his kind supervision, guidance, generous support and patience during the course of this research work.

The writer would like to express his thanks to **Dr. SHERIF AHMED MOSTAFA,** Assistant Professor, Faculty of Engineering, October 6 University.

Thanks should also go to **Dr. Heba Mohamed Issa** for her guidance throughout the theoretical study of this research.

Further more, the writer is grateful to all members of the **Reinforced**Concrete Laboratory Staff, Faculty of Engineering, Cairo University for their kind help during the experimental phase of this study

Finally, I dedicate this thesis to my FATHER, MOTHER, BROTHER, SISTERS, SONS (ANAS AND ASER) AND FINALY MY WIFE for their continuous encouragement and fruitful care.

TABLE OF CONTENTS

	NOWLEDGEMENTLE OF CONTENTS
	OF TABLES
	OF FIGURES
	TRACT
CHA	DTED (1). INTRODUCTION
CIIA	PTER (1): INTRODUCTION
1.1.	General
1.2.	Objectives
1.3.	
СНА	PTER (2): REVIEW OF PREVIOUS WORK
2.1 6	General
	actors affecting shear strength
	.1. Concrete compressive strength
	.2 Slippage
	.3. Types of loading
2.2	.4. Interface position with respect to neutral axis
	.5. Aggregate size and shape
	.6 Casting position
	.7. Concrete placement method
	.8. Concrete age and curing method
	.9. Type of stress acting parallel to the shear plane
	.10. Differential shrinkage
	.11. Dimensions and reinforcement of the tested
_	mens
-	.12. Ratio of shear span to effective depth
	Composite section
	.1. Examples of composite sections
	.2. Structural behavior of composite flexural members
	Shear transfer mechanism in composite members
	.1. The shear friction theory
	.2. General theory for shear transfer mechanism of concrete
2.4	.3. Truss action model of shear transfer
2.5. \$	Shear transfer tests
2.6.	Γypes of composite slabs

2.6.1. Composite slabs with prefabricated beams	21
2.6.2. Conventional steel deck slab system	
2.6.3. Composite concrete-concrete slabs	
2.7. Different types of shear connection between two concrete surfa	
2.7.1 Rough surface connection	
2.7.2. Shear keyed connection.	
2.7.3. Steel doweled shear connection	
2.7.3.1. Effect of percentage area and embedded length of dowe	
2.7.3.2. Effect of steel strength, bar size and spacing	
2.7.3.3. Distribution and shapes of the steel dowels over the spa	
2.7.4. Epoxy binding materials	
2.8. Theoretical analysis of the composite concrete members	
2.9. Prediction of shear transfer capacity	35
2.9.1. Empirical formulas	35
2.9.2. Semi-empirical formulas	36
2.10. Code requirements	
2.10.1. ACI Committee 318-95 (5)	
2.10.2. BS 8110 1995 (8)	
2.10.3. DIN 1045 1978 (9)	
2.10.4. Japanese standard specification (27)	
2.10.5 ECP 203-2007 (14)	43
2.10.5. ECP 203-2007 (14)	43
2.10.5. ECP 203-2007 (14)	43
	43
CHAPTER (3): EXPERIMENTAL PROGRAM	43
CHAPTER (3): EXPERIMENTAL PROGRAM	
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction	74
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study	74 74
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens.	74 74 75
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens.	74 74 75 75
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens.	74 74 75 75
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens 3.2.2. Composite pre-slabs specimens 3.2.3. Shear connectors	74 74 75 75 75
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens 3.2.2. Composite pre-slabs specimens 3.2.3. Shear connectors. 3.3. Characteristics of used materials.	74 75 75 75 76 86
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens 3.2.2. Composite pre-slabs specimens 3.2.3. Shear connectors	74 75 75 75 76 86
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens 3.2.2. Composite pre-slabs specimens 3.2.3. Shear connectors. 3.3. Characteristics of used materials.	74 75 75 76 86 86
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates.	74 75 75 76 86 86
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water.	74 75 75 76 86 86 88
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume.	74 75 75 76 86 86 88 88
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer.	74 75 75 76 86 86 88 88
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer. 3.3.6. Reinforcing steel.	74 75 75 75 76 86 86 88 88 88 88
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer. 3.3.6. Reinforcing steel. 3.4. Mix proportions.	74 75 75 76 86 86 88 88 88 89 90
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer. 3.3.6. Reinforcing steel. 3.4. Mix proportions. 3.5. Preparation of specimens.	74 75 75 76 86 86 88 88 89 90 90
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens 3.2.1. Monolithic slabs specimens 3.2.2. Composite pre-slabs specimens 3.2.3. Shear connectors. 3.3. Characteristics of used materials 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer. 3.3.6. Reinforcing steel. 3.4. Mix proportions 3.5. Preparation of specimens 3.5.1. Mixing and curing.	74 75 75 76 86 86 88 88 89 90 90 91 95
CHAPTER (3): EXPERIMENTAL PROGRAM 3.1. Introduction 3.1.1. Purpose of the study. 3.2. Details of test specimens. 3.2.1. Monolithic slabs specimens. 3.2.2. Composite pre-slabs specimens. 3.2.3. Shear connectors. 3.3. Characteristics of used materials. 3.3.1. Aggregates. 3.3.2. Cement. 3.3.3. Water. 3.3.4. Silica fume. 3.3.5. Super-plasticizer. 3.3.6. Reinforcing steel. 3.4. Mix proportions. 3.5. Preparation of specimens.	74 75 75 75 76 86 88 88 88 90 90 91 95

3.6. Loading of specimens	
3.7. Measurement instruments	
3.7.1. Loads	
3.7.2. Deflection	
3.7.3. Slippage	
3.7.4. Concrete strain	
3.7.5. Shear connectors strain	
3.8. Test procedure	
1	
CHAPTER (4): ANALYSIS AND DISCUSSION OF TEST	
RESULTS	
4.1. Cararal	
4.1. General	
4.2. Deflection.	
4.3. Crack width	
4.4. Steel strain.4.5. Cracking behavior.	
4.5.1. Cracking behavior for monolithic group	
4.5.2. Cracking behavior for group G1	
4.5.3. Cracking behavior for group G2	
4.5.4. Cracking behavior for group G3	
4.5.5. Cracking behavior for group G4	
4.6. Mode of failure	
4.6.1. Mode of failure for group G1	
4.6.2. Mode of failure for group G2	
4.6.3. Mode of failure for group G3	
4.6.4. Mode of failure for group G4	
4.7. Summary of results	
4.7. Summary of results	• • • • • •
CHAPTER (5): ANALYSIS EXPERIMENTAL PROGRAM	
5.1 Turned arises	
5.1. Introduction.	
5.2. Finite element program (ANSYS)	
5.3. Main steps for modeling pre-slab using ANSYS (16.0)	
5.3.1. Elements types	
5.3.1.1. Concrete element.	
5.3.1.2. Steel reinforcement element.	
5.3.1.3. Interface element	
5.3.2. Real constants	
5.3.2.1. Concrete elements	
5.3.2.2. Steel reinforcement element.	

5.3.3. Material properties	156
5.3.3.1. Concrete elements	156
5.3.3.2. Steel reinforcement element	159
5.3.3.3. Lead plates and supports	160
5.3.4. Modeling	161
5.3.4.1. Solid65	161
5.3.4.2. Link180	161
5.3.5. Numbering controls	162
5.3.6. Loads and boundary conditions	162
5.3.7. Analysis type	162
5.3.8. Analysis process for the finite element model	165
5.3.9. Load stepping and failure definition for F.E models	166
5.4. ANSYS Finite element model	166
5.4.1. Elements types for all slabs	166
5.4.1.1. Reinforced concrete	166
5.4.2. Real constants.	167
5.4.3. Material properties	168
5.4.3.1. Material model number 1	168
5.4.3.2. Material model number 2	168
5.4.3.3. Material model number 3	168
5.4.4. Detailing of the model	171
5.4.4.1. Solid65	171
5.4.4.2. Link180	172
5.4.5. Numbering controls	174
5.4.6. Loads and boundary conditions	174
5.4.7. Analysis type	175
5.4.8. Analysis process for the finite element mode	175
3 1	
CHAPTER (6): ANALYSIS CORRELATION BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS	
THEORETICAL AND EXILENTAL RESULTS	
6.1. General	176
6.2. Deflection	176
6.3. Mode of failure	183
CHAPTER (7): CONCLUSION	
7.1. General	184
7.2. Conclusion.	184
7.3. Recommendations for future study	185
REFERENCES	186

LIST OF TABLES

CHAPTER (2)	PAGE
Table 2.1: Empirical formulas of previous work	44
Table 2.2: Design ultimate horizontal shear stress at interface according to BS 8110 (8)	45
Table 2.3: Limits of basic values of the shear stress for the design of shear reinforcement in kg/cm2 under service load according to DIN 1045.	46
CHAPTER (3)	
Table 3.1: Designation of experimental testing groups	77
Table 3.2: Material quantities in kg/m³ for the cube strength specimens.	91
Table 3.3: Compressive strength of concrete cubes	99
CHAPTER (5)	
Table 5.1: Real constants for Solid65	155
Table 5.2: Real constants for Link 180	156
Table 5.3: Material properties for the concrete element	157
Table 5.4 :Material properties for the steel reinforcement element	160
Table 5.5: Material properties for the lead plates and supports element	160
Table 5.6: Commands used to control nonlinear analysis	163
Table 5.7: Commands used to control output	163
parameters	164
Table 5.9: Advanced nonlinear control settings used	164
Table 5.10: Real constants.	167
Table 5.11: Material properties	169
Table 5.12: Element attributes for the model	174

LIST OF FIGURES

CHAPTER (2)	PAGE
Figure 2.1.a: Effect of compressive strength of old concrete	48
Figure 2.1.b: Effect of compressive strength of new concrete Figure 2.2: Ultimate shear strength against concrete	48
compressive strength	49
Figure 2.3: Effect of concrete strength on shear transfer of	17
initially cracked push-off specimens	49
Figure 2.4: Effect of compressive strength and ρ fy on shear	.,
strength	50
Figure 2.5: Strain distribution showing two-beam action	50
Figure 2.6: Shear stress-slip curve for shear across construction	
joint subjected to reversed cyclic loading	51
Figure 2.7: Test specimen dimensions	51
Figure 2.8: Casting position	52
Figure 2.9: Effect of casting position	52
Figure 2.10: Effect of method of placement	53
Figure 2.11: Effect of direct stress acting parallel to shear plane	53
Figure 2.12: Effect of K ratio on calculated maximum shear	
strength	54
Figure 2.13: Effect of transverse steel on shear strength	54
Figure 2.14: Effect of shear span/effective depth and steel	
across joint on ultimate strength	55
Figure 2.15.a: Distribution of stresses in horizontal section of	
composite member	56
Figure 2.15.b: Test arrangement.	56
Figure 2.16: Details of tested specimens	56
Figure 2.17: Details of tested slabs	57
Figure 2.18: Bending stress and shear stress distribution of	
composite beam.	58
Figure 2.19: Shear friction model.	58
Figure 2.20: Shear friction model.	59
Figure 2.21: Zia's failure envelope.	60
Figure 2.22: Comparison of test result with Zia's failure	
envelope	60
Figure 2.23.a, b: Shear transfer of initially uncracked concrete.	61
Figure 2.23.c: Comparison of calculated and tested shear	
transfer strength of initially uncracked push-off specimens	61

Figure 2.24: Comparison of shear transfer strength calculated by mattock and Neil approach with the measured strengths of
initially cracked push-off and pull-off specimens
Figure 2.25: Shear stress against shear strain given by Thomas
Figure 2.26: Strut and tie model for shear transfer across
interface
Figure 2.27.a: Effect of concrete strength on prediction of shear transfer capacity
Figure 2.27.b: Effect of normal stress on prediction of shear
transfer capacity
Figure 2.28: Details of push-off specimens
Figure 2.29: Details of push-off specimens tested by Dong
Figure 2.30: Details of beams tested by Grossfield
Figure 2.31: Section of beams tested by Saemann
Figure 2.32: Effect of shear keys on shear strength
Figure 2.33: Details of theoretical test specimen
Figure 2.34: Effect of dowels area on shear transfer strength
Figure 2.35: Section of tested specimens
Figure 2.36.a: Shear stress at 0.005 inch slip against steel
across joint
Figure 2.36.b: Ultimate shear strength against steel across joint.
Figure 2.37: Effect of dowels diameter
Figure 2.38: Details of specimens with steel trusses shear
connectors.
Figure 2.39: Shear stud in favorable, central and un favorable
position
CHAPTER (3)
Figure 3.1: Typical dimensions and reinforcement of
monolithic slabs (M1, M2)
Figure 3.2: Typical dimensions and reinforcement of composite
pre-slabs (S11, S31)
Figure 3.3: Typical dimensions and reinforcement of composite
pre-slabs (S12, S32).
Figure 3.4: Typical dimensions and reinforcement of composite
pre-slabs (S13, S33)
Figure 3.5: Typical dimensions and reinforcement of composite pre-slabs (S21, S41)
Figure 3.6: Typical dimensions and reinforcement of composite

pre-slabs (S22, S42)	83
pre-slabs (S23, S43)	84
Figure 3.8: Typical dimensions of shear connector shapes	85
Figure 3.9: Fine aggregates natural sand	86
number1	87
Figure 3.11: Course aggregates Cleaning process	87
Figure 3.12: Ordinary Portland cement packing	88
Figure 3.13: Silica fume packing	89
Figure 3.14: Super-plasticizer packing	90
Figure 3.15: Preparing of wooden form of thespecimens	92
Figure 3.16: Preparing of steel bars with shear connectors	92
Figure 3.17: Placing of steel mesh in wooden form (Shape1)	93
Figure 3.18: Placing of steel mesh in wooden form (Shape2)	93
Figure 3.19: Placing of steel mesh in wooden form (Shape3)	94
Figure 3.20: Placing of electrical strain gauges in dowels	94
Figure 3.21: Concrete mechanical mixer	95
Figure 3.22: Concrete compaction	96
Figure 3.23: Smoothing of the final concrete surface	96
Figure 3.24: Concrete curing	97
Figure 3.25: cubes specimen	98
Figure 3.26: Investigation of concrete compressive strength	98
Figure 3.27: cubes specimen after testing	99
Figure 3.28: Surface cleaning	100
Figure 3.29: vertical deflection points	102
Figure 3.30: Specimen paint and demec points distribution	103
Figure 3.31: positions of dial gauge to measure the slippage	104
Figure 3.32: General view of test setup	105
CHAPTER (4)	
Figure 4.1: Deflection profile at cracking load of M1 and G1	107
Figure 4.2: Deflection profile at cracking load of M1 and G2	108
Figure 4.3: Deflection profile at cracking load of M2 and G3	108
Figure 4.4: Deflection profile at cracking load of M2 and G4	109
Figure 4.5: Deflection profile at ultimate load of M1 and G1	109
Figure 4.6: Deflection profile at ultimate load of M1 and G2	110
Figure 4.7: Deflection profile at ultimate load of M2 and G3	110
Figure 4.8: Deflection profile at ultimate load of M2 and G4	111

Figure 4.9:	Load-Deflection curves at left side of M1 and G1	111
Figure 4.10:	Load-Deflection curves at middle of M1 and G1	112
Figure 4.11:	Load-Deflection curves at right side of M1 and	
G1		112
	Load-Deflection curves at left side of M1 and G2	113
Figure 4.13:	Load-Deflection curves at middle of M1 and G2	113
Figure 4.14:	Load-Deflection curves at right side of M1 and G2	114
Figure 4.15:	Load-Deflection curves at left side of M2 and G3	114
Figure 4.16:	Load-Deflection curves at middle of M2 and G3	115
Figure 4.17:	Load-Deflection curves at right side of M2 and G3	115
Figure 4.18:	Load-Deflection curves at left side of M2 and G4	116
Figure 4.19:	Load-Deflection curves at middle of M2 and G4	116
Figure 4.20:	Load-Deflection curves at right side of M2 and G4	117
Figure 4.21:	Cracking and ultimate loads for tested slabs,	117
Figure 4.22:	Load – Crack width curves at left side of M1 and	
G1		118
Figure 4.23:	Load – Crack width curves at middle of M1 and	
G1		119
Figure 4.24:	Load – Crack width curves at right side of M1 and	
G1		119
Figure 4.25:	Load – Crack width curves at left side of M1 and	
G2		120
Figure 4.26:	Load – Crack width curves at middle of M1 and	
G2		120
Figure 4.27:	Load – Crack width curves at right side of M1 and	
G2	·····	121
Figure 4.28:	Load – Crack width curves at left side of M2 and	
G3		121
Figure 4.29:	Load – Crack width curves at middle of M2 and	
		122
	Load – Crack width curves at right side of M2 and	
G3		122
Figure 4.31:	Load – Crack width curves at left side of M2 and	
G4		123
Figure 4.32:	Load – Crack width curves at middle of M2 and	
G4		123
Figure 4.33:	Load – Crack width curves at right side of M2 and	
G4		124
Figure 4.34:	Load-Steel strain curve in left dowels of G1	125
_	Load-Steel strain curve in right dowels of G1	125
•	Load-Steel strain curve in left dowels of G2	126

Figure 4.37:	Load-Steel strain curve in right dowels of G2	126
Figure 4.38:	Load-Steel strain curve in left dowels of G3	127
Figure 4.39:	Load-Steel strain curve in right dowels of G3	127
Figure 4.40:	Load-Steel strain curve in left dowels of G4	128
Figure 4.41:	Load-Steel strain curve in right dowels of G4	128
Figure 4.42:	Cracks pattern of specimen M1	132
Figure 4.43:	Shear cracks of specimen M1	132
Figure 4.44:	Cracks pattern of specimen M2	133
Figure 4.45:	Shear cracks of specimen M2	133
Figure 4.46:	Cracks pattern of specimen S11	134
Figure 4.47:	Shear cracks of specimen S11	134
Figure 4.48:	Cracks pattern of specimen S12	135
Figure 4.49:	Shear cracks of specimen S12	135
Figure 4.50:	Cracks pattern of specimen S13	136
Figure 4.51:	Shear cracks of specimen S13	136
Figure 4.52:	Cracks pattern of specimen S21	137
Figure 4.53:	Shear cracks of specimen S21	137
Figure 4.54:	Cracks pattern of specimen S22	138
Figure 4.55:	Shear cracks of specimen S22	138
Figure 4.56:	Cracks pattern of specimen S23	139
Figure 4.57:	Shear cracks of specimen S23	139
Figure 4.85:	Cracks pattern of specimen S31	140
Figure 4.59:	Shear cracks of specimen S31	140
Figure 4.60:	Cracks pattern of specimen S32	141
Figure 4.61:	Shear cracks of specimen S32	141
Figure 4.62:	Cracks pattern of specimen S33	142
Figure 4.63:	Shear cracks of specimen S33	142
Figure 4.64:	Cracks pattern of specimen S41	143
Figure 4.65:	Shear cracks of specimen S41	143
Figure 4.66:	Cracks pattern of specimen S42	144
Figure 4.67:	Shear cracks of specimen S42	144
Figure 4.68:	Cracks pattern of specimen S43	145
Figure 4.69:	Shear cracks of specimen S43	145
Figure 4.70:	Relation between shear connector shapes and ratio of	
_	ultimate load	149
_		エマフ