Hemodynamic and tissue oxygenation parameters to guide fluid therapy

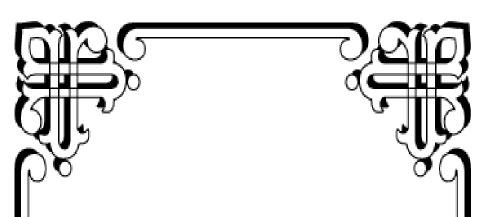
An essay Submitted for Partial Fulfillment of Master Degree in anesthesia

Presented by

Amr Sayed Abdel Mohsen

M.B., B.Ch. Alazher University 2007

Under Supervision of

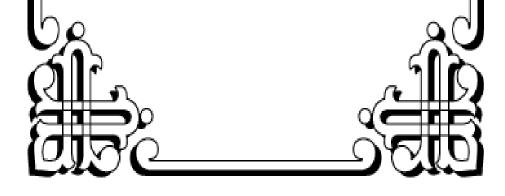

Prof.Dr. Bassel Mohamed Essam Noureldin

Professor of anesthesia & ICU Faculty of Medicine, Ain-Shams University

Prof.Dr. Ahmed Ali Fawaz

Professor of anesthesia & ICU Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain Shams University 2013



مِدْ مِالْمُالِكُمْزِالِيْدِ مِ

المَكِيمِا اللهِ الل "المَكِيمُ اللهِ الله

حدق الله العظيم

(البقرة – الآية 32)

Acknowledgment

Firstly and foremost thanks to **God** almighty who enabled me to carry out this work and every work.

The words can never express my infinite gratitude and respectful appreciation to Professor **Dr. Bassel Mohamed Essam Noureldin**, Professor of anesthesiology &intensive care, Faculty of Medicine, Ain-Shams University, for his valuable guidance, instructive supervision and his intensive support. Without his continuous encouragement and generous advice this work would not have been possible.

I would like to extend my sincere gratitude and express my deepest thanks to **Dr. Ahmed Ali Fawaz, Professor** of anesthesiology &intensive care, Faculty of Medicine, Ain-Shams University for his continuous encouragement, generous attitude as well as his tremendous effort in carrying out this work. He has been hand in hand with me throughout all phases of this work.

I am greatly indebted to all members of the anesthesiology &intensive care department & to all my colleges for their continuous help, contributions & great encouragement throughout the whole work.

Finally my truthful affection and love to My Family, who were and will always be, by my side all my life.

Amr Sayed

List of Contents

Subject	oage
List of abbreviations	Ι
List of tables	III
List of figures	. IV
Introduction	
Aim of the work	. 3
Chapter I: Physiology of fluid therapy	4
Chapter II: Pharmacology of fluid therapy	16
Chapter III: Hemodynamic parameters to guide fluid	
Therapy	34
Chapter IV: Tissue oxygenation parameters to guide fluid	1
Therapy	74
Summary	80
References	85
Arabic summary	

LIST OF ABBREVIATIONS

2D Two- Dimensional

ADH Antidiuretic Hormone

ATLS Advanced Trauma and Life Support

CI Cardiac Index

CO Cardiac Output

COP Colloid Osmotic Pressure

CVCs Central Venous Cannulae

CVP Central Venous Pressure

DIC Disseminated Intravascular Coagulation

DO₂ Oxygen Delivery

ERO₂ Oxygen Extraction Ratio

Hb Hemoglobin

HES Hydroxyethyl Starch

IPPV Intermittent Positive Pressure Ventilation

Mw Molecular Weight

PA Pulmonary Artery

PAC Pulmonary Artery Catheters

PAOP Pulmonary Artery Occlusion Pressure

PEEP Positive End Expiratory Pressure

POP Pulse Oximeter Plethysmography

PPV Pulse Pressure Variation

₹List of Abbreviations **□**

RAP Right Atrial Pressure

RBC's Red Blood Cells

RES Reticulo-endothelial System

ROC Receiver Operator Characteristic

SAFE Saline versus Albumin Fluid Evaluation

ScVO₂ Central Venous Oxygen Saturation at the level of SVC

SOAP Sepsis Occurrence in Acutely ill Patients

SPV Systolic Pressure Variation

SV Stroke Volume

SVC Superior Vena Cava

SVO₂ Central Venous Oxygen Saturation at level of PA

SVV Stroke Volume Variation

TBW Total Body Water

TEE Trans Esophageal Echocardiogram

TTE Trans Thoracic Echocardiogram

VO₂ Oxygen Consumption

vWF Von Willebrand Factor

CaO₂ Arterial Oxygen Content

List of Tables

No.	Title	Page
1	Composition of some commonly used intravenous fluids	16
2	Indication of placement of central venous cannulae	41
3	SVV sensitivity and specifying in predicting fluid responsiveness	57
4	A guide to clinical interpretation of SPV values	66

List of Figures

No.	Title	Page
1	Winters diagram with the subdivision of TBW as a function of age	4
2	Frank-Starling relationship	37
3	The ECG and corresponding central venous waveform	45
4	Pressure waveform seen during advancement of PAC	47
5	Principal hemodynamic effects of the application of mechanical ventilation	56
6	The PiCCO plus system (Pulsion Medical Systems, Munich, Germany)	60
7	The LiDCO plus technique (LiDCO Ltd, London, UK)	61
8	The FloTrac/Vigileo system (Edwards Lifesciences, Irvine, CA, USA)	63
9	SPV after 10 seconds of apnea (Apneic baseline)	64
10	PPV	66
11	Goal-directed therapy with ScvO ₂ -P (v-a) CO ₂ -SVV guided treatment protocol	77

Introduction

Introduction

Emerging data aggressive suggest that early resuscitation of critically ill patients may limit and/or reverse tissue hypoxia, progression to organ failure and improve outcome (Levy et al., 2004). Fluid therapy is considered the first step in the resuscitation of most patients with hypotension and shock. Uncorrected hypovolemia, leading to inappropriate infusions of vasopressor agents, may increase organ hypoperfusion and ischemia (Murakawa and Kobayashi 1988).

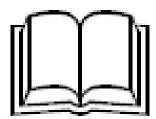
The first step in the hemodynamic management of critically ill patients is to determine the adequacy of tissue/organ perfusion (Hayes et al., 1994). However, clinical studies have consistently demonstrated that only about 50% of hemodynamically unstable critically ill patients are volume responsive (Marik et al., 2009). The resuscitation of the critically ill patient therefore requires an accurate assessment of the patients' intravascular volume status (cardiac preload) and the ability to predict the hemodynamic response following a fluid challenge (volume responsiveness) (Braunwald et al., 1988).

Numerous experimental and clinical studies have clearly demonstrated that static variables, such as central venous pressure and pulmonary artery occlusion pressure reflecting cardiac filling pressures, can't adequately indicate changes in preload or reliably predict fluid responsiveness (Charron et al., 2006). An increasing number of publications has underlined the superiority of dynamic variables of fluid responsiveness, such as systolic pressure variation, pulse

pressure variation, stroke volume variation, plethysmographic waveform variations and other variables which are based on the concept of heart-lung interaction compared to static variables in the decision making process of whether the patient needs fluids or not (Renner et al., 2008).

Optimization of oxygen delivery using either or both fluid loading and inotropic support, to prevent tissue hypoxia in relation to increased oxygen consumption, could improve outcome. In this context, the use of central venous oxygen saturation which reflects important changes in the oxygen delivery/oxygen consumption relationship to address adequacy of oxygen utilization, has shown promising results (Vallet et al., 2011).

Aim of the Work



Aim of the work

This work aims to discuss the role of fluid therapy in management of critically ill patient and hemodynamic and tissue oxygenation parameters to guide fluid therapy.

Review of Literatur

Chapter (1)

Mysiology of Fluid Therapy