Adhesion Molecules Polymorphism in Peripheral Atherosclerosis

THESIS

SUBMITTED FOR PARTIAL FULFILLMENT OF M.D.
DEGREE IN MEDICAL BIOCHEMISTRY

PRESENTED BY Gehan Abd El-Fattah Mohammed Hegazy

M.B., B.Ch. M.Sc. Medical Biochemistry Assistant lecturer of Medical Biochemistry Faculty of Medicine MUST.

SUPERVISED BY

Prof. Dr. OLFAT G.SHAKER

Prof. of Medical Biochemistry Faculty of Medicine, Cairo University

Prof. Dr. ZAKARIA EL-KHAYAT

Prof. of Medical Biochemistry Department National Research Center

Prof. Dr. KHALED M. EL-HINDAWY

Professor of General and Vascular Surgery Faculty of Medicine, Cairo University

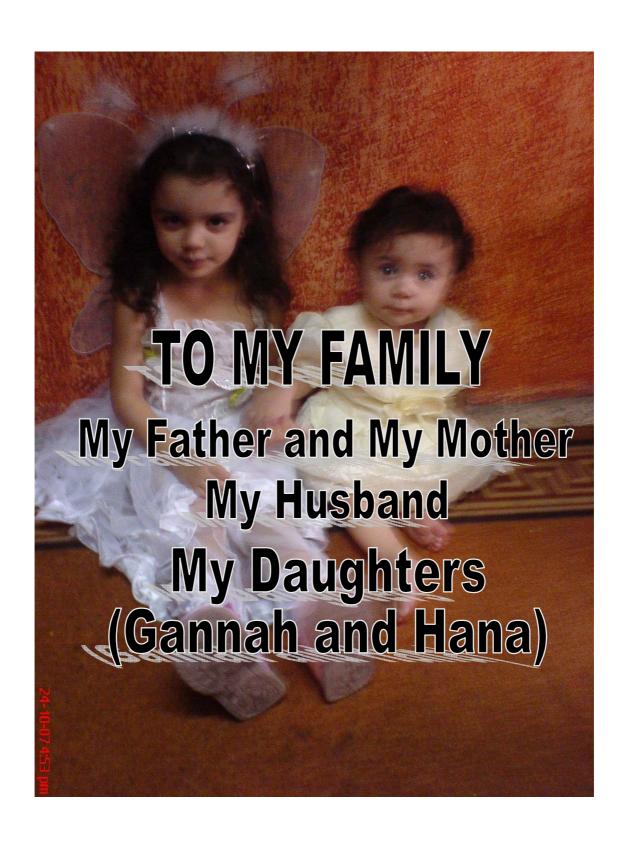
Dr. AMR ZAHRA

Lecturer of Medical Biochemistry Faculty of Medicine, Fayoum University

> Faculty of Medicine Cairo University 2007

ACKNOWLEDGEMENT

First and foremost thanks to **ALLAH** the most beneficial and most merciful who enabled me to conduct this work.


Whatever I say or write, I will never be able to express my deep feelings and profound gratitude to *Prof. Dr. Olfat G. Shaker*, Professor of Medical Biochemistry, Faculty of Medicine, and Cairo University for suggesting and planning the design of the work, offering all facilities for the work, instructive supervision, and valuable instructions throughout the work.

Also, I would like to express my sincere thanks and deepest gratitude to *Prof. Dr. ZAKARIA EL- KHAYAT* Professor of Medical Biochemistry, National Research Center, for his continuous encouragement, valuable support, his kind care, and scientific guidness.

I am deeply thankful to *Prof.Dr. KHALED M. EL-HINDAWY* Professor of general and vascular surgery, Faculty of Medicine, Cairo University for his kind supervision, generous cooperation, great help and encouragement to finish this work.

I am deeply thankful to *Dr. AMR ZAHRA* lecturer of Medical Biochemistry, Faculty of Medicine, Fayoum University for his kind supervision, great help and valuable teaching, throughout this work.

Finally, I want to thank the patients and healthy volunteers for their cooperation.

ABSTRACT

Numerous reports document the role of vascular adhesion molecules in the development and progression of atherosclerosis. E-selectin plays a role in the early stages of vascular disease by facilitating the attachment of leukocytes to the endothelium. Polymorphism in the E-selectin gene leading to a replacement of serine by arginine at position 128 has been associated with premature coronary artery disease. Intercellular adhesion molecule-1 (ICAM-1) plays a crucial role in lymphocyte migration and activation, and is considered important in the pathogenesis of atherosclerosis. The aim of the present study was to evaluate the association between gene polymorphism of E-selectin & ICAM-1 and peripheral arterial occlusive disease (PAOD) in Egyptian. We investigated 2 mutations, namely S128R in E-selectin and K469E in ICAM-1 in 52 patients with PAOD and 30 control subjects using polymerase chain reaction—restriction fragment length polymorphism (PCR-RFLP) analysis in an Egyptian population. Patients were classified into 31 diabetic and 21 non diabetic subjects.

The distribution of E-selectin genotypes in patients affected by PAOD was 84.6% AA genotype and 15.4% AC genotype. The distribution of E-selectin genotypes in control subjects was 96.7% AA and 3.3% AC. The AC genotype was significantly more common in patients than controls. Additionally, the distribution of ICAM-1 genotypes in patients affected by PAOD was 30.8% EE, 48% EK, and 21.2% KK. The distribution of ICAM-1 genotypes in control subjects was 13.3% EE, 33.4% EK and 53.3% KK. The EE genotype was significantly more common in patients than controls. It is interesting in this study those patients having AC genotype, also having EE genotype.

Conclusions- Our data support the hypothesis that inflammatory mechanisms are important in the pathophysiology of vascular diseases with an atherosclerotic basis. Eselectin gene S128R polymorphism and ICAM1 gene K469E polymorphism were associated with increased risk in PAOD. The E allele may serve as a genetic risk factor for PAOD.

Early detection of these gene polymorphism helps in early prophylaxes against PAOD.

Key Words: PAOD (Peripheral Arterial Occlusive disease), ICAM-1, E-selectin, RFLP.

CONTENTS

	Page
List of Tables	I
List of Figures	II
List of Abbreviation	IV
Introduction	1
Aim of work	3
Review of literature	
Chapter 1: Atherosclerosis	4
Normal Vessels	4
The Endothelium	4
Definition Of Atherosclerosis	7
Pathology Of Atherosclerosis	9
Pathogenesis Of Atherosclerosis	13
Clinical Aspect Of Atherosclerosis	23
Atherosclerotic Peripheral Vascular (Arterial) Disease	23
Risk Factors Of Atherosclerosis	30
Chapter 2: Adhesion molecules	38
Classification Of Adhesion Molecules	39
Physiologic Functions Of CAM	46
Function Of Cell Adhesion Molecules In Development, Motility	48
And Migration	
Proliferation, Neoplasia, Malignancy	49
Adhesion Molecules And Ischemia/Reperfusion (I/R)-Induced	50
Microvascular Dysfunction Regulation of Endatholial CAM Expression	51
Regulation of Endothelial CAM Expression E-SELECTIN	
	53 53
Introduction E-Selectin Structure and Function	53 55
E-Selectin Polymorphism in Different Diseases	60
ICAM-1	62
Introduction	62
ICAM-1 Structure	62
ICAM-1 Polymorphism In Different Diseases	68
Chapter 3: Adhesion molecules Polymorphism in	
Atherosclerosis	72
E-Selectin Gene	72
E-Selectin Polymorphism	73
Effect of Genotypes on Serum Level	75
E-Selectin Polymorphism and Atherosclerosis	76
ICAM-1 Gene	77
ICAM-1 Polymorphism	78
ICAM-1 Polymorphism And Atherosclerosis	80
SUBJECTS AND METHODS	82

RESULTS	92
DISCUSSION	113
CONCLUSION AND RECOMMENDATION	124
SUMMARY	125
REFERENCE	128
ARABIC SUMMARY	

LIST OF TABLES

Table	Titles	Page
1	Endothelial Cell Properties and Functions	5
2	Fontaine's classification of PAD	27
3	Rutherford categories of PAD	27
4	Markers for the identification of individual risk factors	37
5	Selectin, integrin and immunoglobulin superfamily molecule	41
6	Sequence of primers	84
7	The clinical data of all studied groups	93
8	Laboratory data of all studied groups	99
9	Genotypes and allele of E-Selectin among all groups	102
10	Genotype and allele of ICAM in patients and control	105
11	Association between ICAM-1 and E-Selectin genotype	105
12	Comparison for E-Selectin Genotypes regarding to Clinical Data in all patients	107
13	The laboratory data of all patients regarding their relation to genotypes of E-Selectin	108
14	Comparison between ICAM genotypes regarding to clinical data in all patients	109
15	Comparison between ICAM genotypes regarding to laboratory data in all patients	110
16	Frequency distribution of sites of occlusion for all patients	111
17	Comparison for E-Selectin genotypes regarding to site of occlusion in all patients	112
18	Comparison for ICAM genotypes regarding to their site of occlusion in all patients	112

LIST OF FIGURES

Fig.	Titles	Page
1	Diagrammatic representation of the main components of the vascular wall	4
2	Endothelial cell response to environment stimuli; causes (activators) and consequences (induced genes)	6
3	The American Heart Association classification of human atherosclerotic lesions	10
4	Schematic diagram of the mechanism of intimal thickening	11
5	Schematic depiction of the major components of well-developed intimal atheromatous plaque overlying an intact media	12
6	Schematic diagram of hypothetical sequence of cellular Interactions in atherosclerosis	15
7	Schematic representation of the role of autoimmune responses to HSP60 in atherosclerosis	22
8	Primary sites for "IC" presentation: (a) anterior view and (b) posterior view	26
9	Algorithm showing approach to a patient with peripheral arterial disease	30
10	The 4 major classes of cell adhesion molecules illustrating their transmembrane structure and their cell counter-receptors	40
11	GTPase – GDPase transactivation modulated by GEF and GAP. Activation brought about by binding GTPase to GTP.	44
12	Domains of CD 44 molecule. Intracellular CD44 ligands: E - ezrin, R- radixin, M – moesin.	46
13	The extracellular N-terminus carrying the lectin-like domain is followed by an EGF-like domain and various numbers of consensus repeat (CR) domains	53
14	Schematic representation of E-selectin molecule	55
15	Model of ICAM-1 oligomerization	63
16	Productive engagement of ICAM-1 activates several signaling pathways	65
17	Agarore gel electrophoresis 1.5% stained with ethdium bromide showing the E-selectin DNA product after digestion with PstI	86
18	Agarose gel electrophorsis 1.5% stained with ethidium bromide showing the ICAM-1 DNA product after digestion with BstU I	87

19	Percentage of smoking among all groups	95
20	Percentage of hypertension among all groups	95
21	Percentage of IHD among all groups	96
22	Percentage of CVD among all groups	96
23	Percentage of family history of DM among all groups	98
24	Percentage of family history of hypertension among all	98
	groups	
25	Mean value of FBS among groups of the study	100
26	Mean value of lipid profile among all groups of the study	101
27	The percentage of genotype distribution of E-selectin among	103
	all groups	
28	The percentage of single allele of E-selectin distribution	103
	among all groups	
29	The percentage of genotype distribution of ICAM among all	106
	groups	
30	The percentage of single allele of ICAM distribution among	106
	all groups	

LIST OF ABBERVIATIONS

ABI Ankle – Brachial Index

ACE Angiotensin Converting Enzyme

AP-1 Activator Protein 1

APC Adenomatous Polyposis Coli

A561C Adinine/Cytosine 561
ALT (IU/l) Alanine Transaminase
AT1 Angiotensin II Type 1

ARE Antioxidant Response Elements

Arg Argnine

AST Asprtate Transaminase

CAC Coronary Artery Calcification
CAD Coronary Artery Disease
CAMs Cell Adhesion Molecules

CD Celiac Disease

cDNA Complemtary Deoxyriboneucleic Acid

CHD Coronary Heart Disease

CLA Cutaneous Lymphocyte Antigen

C. pneumonia Chlamydia Pneumonia

CR Consensus Repeat

CRBP-1 Cellular Retinol Binding Protein-1

CRC Colorectal Cancer
CRP C-Reactive Protein
CS Cigarette Smoking

CSF Colony-Stimulating Factor
CT Computed Tomography

CTA Computed Tomographic Angiography

CVD Cardiovascular Disease CVS Cerebrovascular Stroke

DM Diabetes Mellitus
Dgl Desmoglein Isoforms
Dsc Desmocollin Isoforms

EC Endothelial Cells
ECG Electrocardiogram
ECM Extracellular Matrix

EDTA Ethylene Diamine Tetraacetic Acid

EGF Epidermal Growth Factor

ELAM Endothelial Leukocyte Adhesion Molecule

eNOS Endothelial NO Synthase

ESL E-Selectin Ligand

ESR Erythrocyte Sedimentation Rate

ET-1 Endothelin-1

FBS Fasting Blood Sugar.

FGF Fibroblast Growth Factor

GAP GTPase Activation Protein

GEF Guanine Exchange Factor

GDP Guanisine Diphosphate

GMP Guanosine Mono Phosphate

GSK-3 β Glycoprotein Synthase Kinase-3 β

HA Hyaluronate

HDL High Density Lipoprotein

HIV Human Immunodeficiency Virus

HSP Heat Shock Protein

HTN Hypertension

HUVEC Human Umbilical Vein Endothelial Cells

IBD Inflammatory Bowel Disease IC Intermittent Claudication

ICAM-1 Intercellular Adhesion Molecule-1 IDDM Insulin Dependent Diabetes Mellitus

IHD Ischemic Heart Disease

IL Interleukin

I/R Ischemia/Reperfusion.
IRS Insulin Resistance Study

ITIMs Immunoreceptor Tyrosine Inhibition Motifs

KB Kilobases

LDL Low Density Lipoprotein

LECAM Lymphocyte Endothelial CAM

LFA Lymphocyte Function Associated Antigen

Lp Lipoprotein

LPS Lipopolysaccharide

MAP Mitogen Activated Protein MAdCAM Mucosal Addressin CAM

MCP-1 Monocyte Chemoattractant Protein-1

MI Myocardial Infarction

MIDAS Metal Ion Dependent Adhesion Site
MIF Macrophage Migration Inhibitory Factor
MIP-2 Macrophage Inflammatory Protein-2

MMP Matrix Metalloproteinase

MRA Magnetic Resonance Angiography

mRNA Messenger Ribonucleic Acid

MS Multiple Sclerosis

MVEC Microvascularendothelial Cells NIHD Non Ischemic Heart Disease

NF-kB Nuclear Factor kB

NO Nitric Oxide ox-LDL Oxidized LDL

PAD Peripheral Arterial Disease

PAOD Peripheral Arterial Occlusive Disease

PCR Polymerase Chain Reaction

PADGEM Platelet Activation-Dependent Granule External

Membrane Protein

PDGF Platelet-Derived Growth Factor

PECAM Platelet–Endothelial Cell Adhesion Molecule

PKC Protein Kinase C

PSC Primary Sclerosing Colangitis PSGL P-Selectin Glycoprotein Ligand

PTA Percutaneous Transluminal Angioplasty

RA Rheumatoid Arthritis RAD Renal Artery Disease

RAS Renin-Angiotensin System

RF Rheumatoid Factor

ROS Reactive Oxygen Species

RPTP Receptor Protein Tyrosine Phosphatases

RR Relapsing Remitting

SBP Segmental Blood Pressure

sCAD Spontaneous Cervical Artery Dissection

SH2 Src Homology 2

SMCs: Smooth Muscle Cells

SNP Single Nucleotide Polymorphism

SP-MS Secondary Progressive

SSEA Sialyl Stage-Specific Embryonic Antigen

sTNFR Soluble TNFR

TBE Tris-Borate EDETA
TF II D Transcription Factor II D

TGF-β, Transforming Growth Factor-Beta

TM Transmembrane

TNF-α Tumor Necrosis Factor -α

TNFR Tumor Necrosis Factor Receptor

UT Untranslated

VCAM-1 Vascular Adhesion Molecule-1

VLA Very Late Antigen

WHO World Health Organization

INTRODUCTION

Peripheral arterial disease (PAD) is associated with high mortality rates (e.g. 30%, 50% and 70%, at 5, 10 and 15 years, respectively due to a high incidence of cerebrovascular and cardiovascular events. This may be explained, at least in part, by the ongoing endothelial and enhanced coagulation activation that occurs in PAD patients compared with normal individuals. Irrespective of the cause underlying the increased incidence of cerebrovascular and cardiovascular events, PAD patients are more likely to have a fatal or non-fatal myocardial infarction (MI) or stroke that of ever requiring a major amputation. In addition, the presence of PAD in patients with stable angina conveys a 6.3-fold increased risk for sudden death (*Paraskevas et al.*, 2007).

Cellular adhesion molecules are markers of inflammation that are hypothesized to play a major role in the initiation of atherosclerotic lesions. The cell adhesion molecules are important for binding of leukocytes to the endothelial cells and in the infiltration of inflammatory cells into tissues. Various inflammatory mediators such as TNF- α , IL-1 β and bacterial lipopolysaccharide (LPS), increase the expression of cell adhesion molecules (CAMs) including ICAM-1, VCAM-1 and E-selectin on endothelial cells (*Kumar et al.*, 2007).

Thus, upon inflammatory stimulation, the endothelial barrier function is rapidly lost and preformed P-selectin is translocated to the luminal surface of endothelial cells, followed by expression and release of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1), substances that regulate attachment and

transendothelial migration of leukocytes. Both macrophages and endothelial cells produce ICAM-1 in response to inflammatory cytokines (*Bartzeliotou et al.*, 2007).

During inflammation, E-selectin, which is usually absent in normal tissues, is expressed on the endothelium. After activation by cytokines, adhesion molecules are shed from the surface of endothelial cells and leucocytes and their circulating levels in plasma can be measured, serving as markers of endothelial activation and vascular inflammation (*Afshar-Kharghan and Thiagarajan*, 2006).

The inflammatory reaction that accompanies development and progression of atherosclerosis is orchestrated by several molecules, belonging to different families of inflammatory mediators, such as cytokines, chemokines, adhesion molecules, and proteolytic enzyme. Importantly, plasma levels and/or functional activity of these inflammation determinants may be strongly influenced by functional single nucleotide polymorphisms of the corresponding genes, with important clinical implications (*Flex et al.*, 2007).

As all these inflammatory mediators display complex interactions during atherogenesis, genetic studies aimed to investigate individual susceptibility to cardiovascular diseases (CVDs) should not be limited to the evaluation of polymorphisms of single inflammatory genes, but should consider several genetic variants together, in order to account for the pleiotropic and interdependent effects of candidate genes (*Flex et al.*, 2004).

Aim of the Work

The aim of the present study is to evaluate the association between gene polymorphisms of ICAM-1 & E-selectin and atherosclerotic peripheral diseases.