


## **Emulsifier Free Emulsion Polymerization in Presence** of Some Fine Solid Inorganic Particles

## A Thesis

Submitted to

Faculty of Science - Ain- Shams University

By

Mahmoud Essam Abd El-Aziz Shaaban

M.Sc. in Org.Chem. Cairo University, 2009

For

The Degree of Ph.D.

in

**Organic Chemistry** 

2014



## **Emulsifier Free Emulsion Polymerization in Presence** of Some Fine Solid Inorganic Particles

A Thesis Submitted to Faculty of Science, Ain-Shams University

By

Mahmoud Essam Abd El-Aziz Shaaban

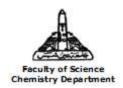
M.Sc. Org.Chem. Cairo University, 2009

For

The Degree of Ph.D. in Organic Chemistry

## **Thesis Supervisors**

## Prof. Dr. Abd El-Gawad M. Rabie


Prof. of Polymer Chemistry, Chemistry Depart, Faculty of Science, Ain Shams University

#### Prof. Dr. Abdalla B. Moustafa

Prof. of polymer Chemistry,
Polymer & Pigments Department,
National Research Center

### Prof. Dr. Hisham A. Essawy

Prof. of polymer Chemistry,
Polymer & Pigments Department,
National Research Center



## **Approval Sheet of the Thesis**

## **Entitled**

# **Emulsifier Free Emulsion Polymerization in Presence of Some Fine Solid Inorganic Particles**

| Thesis Advisors                                                    | Thesis Approved                         |
|--------------------------------------------------------------------|-----------------------------------------|
| Prof. Dr. Abd El-Gawad M. Rabie                                    |                                         |
| Chemistry Department, Faculty of Science,<br>Ain Shams University. |                                         |
| Prof. Dr. Abdalla B. Moustafa                                      | • • • • • • • • • • • • • • • • • • • • |
| Polymer & Pigments Department,<br>National Research Cente          |                                         |
| Prof. Dr. Hisham A. Essawy                                         |                                         |
| Polymer & Pigments Department,<br>National Research Cente          |                                         |

**Head of Chemistry Depart** 

**Prof. Dr. Hamed Ahmed Younes** 

#### **ACKNOWLEDGEMENT**

First and before all, I would like to thank ALLAH who granted me the ability to perform this thesis and helped me to pass safely through all the difficulties which I thought impossible to overcome.

I wish to express my deep appreciation to Prof Dr. **Abd El-Gawad Mohamed Rabie** Professor of Polymer Chemistry, Faculty of Science, Ain Shams University, for his benevolent supervision and kindly guidance throughout this work, and continuous supervision.

I am very grateful to Prof. Dr. **Abdalla Baker Moustafa**, Prof. Dr. **Hisham Abd El-Fatah Essawy** and Prof. Dr. **Hassen S. Emira**, Professors of Polymer Chemistry, National Research Center, for suggestion of the topic of this work, their precious supervision, continuous effort and help to have this work done.

My thanks are expanded to my colleagues in the Department of Polymers & Pigments, National Research Center, for their cooperation and their help in various ways.

I am profoundly grateful to all staff members of the Chemistry Department, Faculty of Science, Ain Shams University.

#### **Abstract**

Name: - Mahmoud Essam Abd El-Aziz

**Title:-** Emulsifier Free Emulsion Polymerization in Presence of Some Fine Solid Inorganic Particles

Degree:- Ph. D.

Solid nanoparticles can be used as stabilizers for oil/water (o/w) emulsions instead of the conventional surfactants. In this thesis, styrene was initially ultrasonicated in water in the presence of silica nanoparticles as solid particles stabilizer to induce the formation of stable o/w emulsion in the presence of potassium persulfate (PPS) as a water soluble initiator, under wide range of conditions including the initiator, monomer concentration, content of the silica nanoparticles, pH and temperature. The emulsion stability, morphology and the kinetics for this system were illustrated.

Also, the montmorillonite (Nanofil® 116) was used as solid nanoparticles stabilizer to induce the formation of stable (o/w) emulsion in the presence of PPS. Imaging with transmission electron microscope (TEM) and a field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) unit proved the formation of hybrid latex particles

via Pickering mode of emulsification. Furthermore, the thermal gravimetric analysis (TGA) showed the increase in the degradation temperature of polystyrene in the formed composite which proved the formation of protective sheath from silica or montmorillonite surrounding the polystyrene formed.

The prepared nanocomposites (polystyrene/Ludox HS-30 and polystyrene/montmorillonite) were added in different contents (wt%) to polypropylene and ethylene-vinyl acetate copolymer to study their effect on the physico-mechanical properties of these polymers.

## **Keywords:-**

Styrene - Ludox HS-30 - Nanofil® 116 - Pickering emulsion - kinetic study - polystyrene/Ludox HS-30 composite - polystyrene/montmorillonite nanocomposites.

## **Contents**

|                                                          | Page |
|----------------------------------------------------------|------|
|                                                          | No.  |
| Aim of the work                                          | I    |
| List of Abbreviations                                    | ΙI   |
| List of Tables                                           | III  |
| List of Figures                                          | VI   |
| Chapter I                                                |      |
| 1- Introduction                                          | 1    |
| 1.1 Emulsion polymerization                              | 1    |
| 1.2 Stability of Emulsions                               | 1    |
| 1.2.1 Stabilization with Surfactants                     | 2    |
| 1.2.1.1. Steric hindrance                                | 2    |
| 1.2.1.2. Electrostatic repulsion                         | 3    |
| 1.2.2 Stabilization with Polymers                        | 3    |
| 1.2.3 Stabilization with Particles                       | 4    |
| 1.2.3.1 Factors affecting emulsion stability using solid | 7    |
| particles                                                |      |
| 1.2.3.1.1 Effect of particles concentration              | 7    |
| 1.2.3.1.2 Effect of particles wettability                | 8    |
| 1.2.3.1.3 Effect of particles size                       | 11   |
| 1.2.3.1.4 Effect of particle-particle interaction        | 11   |
| 1.2.3.1.5 Effect of electrolyte                          | 12   |
| 1.2.3.1.6 Effect of water-oil ratio                      | 13   |

| CON | ITEN | ITS |
|-----|------|-----|
|     |      |     |

| 1.2.3.2 Advantages of stabilization of emulsions using   | 13 |
|----------------------------------------------------------|----|
| solid particles (Pickering emulsions)                    |    |
| 1.2.3.3 The general rules of solid particles -stabilized | 15 |
| emulsions                                                |    |
| Chapter II                                               |    |
| 2- Literature Review                                     | 16 |
| 2.1 Pickering emulsion using inorganic solid particles   | 16 |
| 2.2 Pickering emulsion using clay nanoparticles          | 39 |
| 2.3 Pickering emulsion using polymeric nanoparticles     | 44 |
| Chapter III                                              |    |
| <b>Materials and Experimental Techniques</b>             | 47 |
| 3.1 Materials                                            | 47 |
| 3.2. Methods                                             | 47 |
| 3.2.1 Preparation of Pickering emulsion                  | 47 |
| 3.2.2 Sampling                                           | 48 |
| 3.2.3 Polymer staining                                   | 48 |
| 3.3 Measurements and characterizations                   | 49 |
| 3.3.1 Gel Permeation Chromatography (GPC)                | 49 |
| 3.3.2. Transmission Electron Microscope (TEM)            | 50 |
| 3.3.3. Field Emission- Scanning Electron Microscope      | 51 |
| (FE-SEM)                                                 |    |
| 3.3.4. Dynamic Light Scattering (DLS)                    | 52 |
| 3.3.5. Thermal analysis                                  | 52 |

| CONT                                                | <u>ENTS</u> |
|-----------------------------------------------------|-------------|
| 3.3.6. Infrared spectroscopy                        | 52          |
| 3.37. Physico-mechanical properties                 | 52          |
| 3.3.8. Hardness measurement                         | 52          |
| 3.3.9 XRD Analysis                                  | 53          |
| 3.4 Theoretical calculations                        | 53          |
| 3.4.1 Calculation of the rate of emulsion           | 53          |
| polymerization (R <sub>p</sub> )                    |             |
| 3.4.2 Calculation of the apparent activation energy | 53          |
| Chapter IV                                          |             |
| 4- Results and Discussion                           | 55          |
| 4.1. Pickering emulsion polymerization of styrene   | 55          |
| using Ludox HS-30 as solid particles stabilizer     |             |
| 4.1.1. Emulsion stability                           | 55          |
| 4.1.1.1. Effect of monomer concentration            | 56          |
| 4.1.1.2. Effect of initiator concentration          | 63          |
| 4.1.1.3. Effect of solid particles (Ludox HS-30)    | 68          |
| concentration                                       |             |
| 4.1.1.3.1. Effect of solid particles (Ludox HS-30)  | 68          |
| content at styrene concentration 0.435 mol/L        |             |
| 4.1.1.3.2. Effect of solid particles (Ludox HS-30)  | 74          |
| content at styrene concentration 1.304 mol/L        |             |
| 4.1.1.4. Effect of pH on the stability of the       | 80          |
| emulsion                                            |             |

| 4.1.1.4.1. Effect of pH on the stability of the                                                                                                                                                                                                                                                                                                                                           | 83                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| emulsion before polymerization                                                                                                                                                                                                                                                                                                                                                            |                          |
| 4.1.1.4.2. Effect of pH on the stability of the                                                                                                                                                                                                                                                                                                                                           | 87                       |
| emulsion after polymerization                                                                                                                                                                                                                                                                                                                                                             |                          |
| 4.1.2. Thermal gravimetric analysis of the Pickering                                                                                                                                                                                                                                                                                                                                      | 98                       |
| emulsions                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| 4.1.2.1. Effect of the Ludox HS-30 concentration on                                                                                                                                                                                                                                                                                                                                       | 99                       |
| the thermal degradation of polystyrene/Ludox                                                                                                                                                                                                                                                                                                                                              |                          |
| HS-30 composite                                                                                                                                                                                                                                                                                                                                                                           |                          |
| 4.1.2.2. Effect of pH value on the thermal degradation                                                                                                                                                                                                                                                                                                                                    | 101                      |
| of polystyrene/Ludox HS-30 composites                                                                                                                                                                                                                                                                                                                                                     |                          |
| 4.1.3. Characterization with infrared spectroscopy                                                                                                                                                                                                                                                                                                                                        | 102                      |
|                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| 4.1.4. A kinetic study of the Pickering emulsion                                                                                                                                                                                                                                                                                                                                          | 105                      |
| 4.1.4. A kinetic study of the Pickering emulsion polymerization of styrene                                                                                                                                                                                                                                                                                                                | 105                      |
| · ·                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| polymerization of styrene                                                                                                                                                                                                                                                                                                                                                                 |                          |
| polymerization of styrene 4.1.4.1. Dependence of the rate of polymerization on the                                                                                                                                                                                                                                                                                                        | 105                      |
| polymerization of styrene 4.1.4.1. Dependence of the rate of polymerization on the monomer concentration                                                                                                                                                                                                                                                                                  | 105                      |
| <ul> <li>polymerization of styrene</li> <li>4.1.4.1. Dependence of the rate of polymerization on the monomer concentration</li> <li>4.1.4.2. Dependence of the rate of polymerization on the</li> </ul>                                                                                                                                                                                   | 105<br>109               |
| <ul> <li>polymerization of styrene</li> <li>4.1.4.1. Dependence of the rate of polymerization on the monomer concentration</li> <li>4.1.4.2. Dependence of the rate of polymerization on the initiator concentration</li> </ul>                                                                                                                                                           | 105<br>109               |
| <ul> <li>polymerization of styrene</li> <li>4.1.4.1. Dependence of the rate of polymerization on the monomer concentration</li> <li>4.1.4.2. Dependence of the rate of polymerization on the initiator concentration</li> <li>4.1.4.3. Dependence of the rate of polymerization on</li> </ul>                                                                                             | 105<br>109<br>114        |
| <ul> <li>polymerization of styrene</li> <li>4.1.4.1. Dependence of the rate of polymerization on the monomer concentration</li> <li>4.1.4.2. Dependence of the rate of polymerization on the initiator concentration</li> <li>4.1.4.3. Dependence of the rate of polymerization on the Ludox HS-30 concentration</li> </ul>                                                               | 105<br>109<br>114        |
| <ul> <li>polymerization of styrene</li> <li>4.1.4.1. Dependence of the rate of polymerization on the monomer concentration</li> <li>4.1.4.2. Dependence of the rate of polymerization on the initiator concentration</li> <li>4.1.4.3. Dependence of the rate of polymerization on the Ludox HS-30 concentration</li> <li>4.1.4.4. Dependence of the rate of polymerization on</li> </ul> | 105<br>109<br>114<br>119 |

| 4.2. Pickering emulsion polymerization of styrene | 125 |
|---------------------------------------------------|-----|
| using Nanofil® 116 as solid particles stabilizer  |     |
| 4.3. Enhancement of the physico-mechanical        | 136 |
| properties of polypropylene and ethylene vinyl    |     |
| acetate copolymer using polystyrene/Ludox HS-     |     |
| 30 and polystyrene/clay nanocomposite             |     |
| 4.3.1. Effect of the polystyrene/Ludox HS-30 and  | 137 |
| polystyrene/clay nanocomposite on the mechanical  |     |
| properties of ethylene vinyl acetate copolymer    |     |
| (EVA)                                             |     |
| 4.3.2. Effect of the polystyrene/Ludox HS-30 and  | 141 |
| polystyrene/clay nanocomposite on the mechanical  |     |
| properties of polypropylene (PP)                  |     |
| <b>Summary and Conclusions</b>                    | 145 |
| References                                        | 149 |