The role of intrapulmonary and Serum Complement Component 5 (C 5)in the pathogenesis of atopic asthma

Thesis submitted for partial fulfillment of MSC degree in Internal medicine
Submitted By

Hosam Eldean Mahmoud Fawy

M.B,B.CH. **Supervised by**

Professor Doctor / Mohamed Kamel Sabry

Prof. of Allergy & clinical immunology Faculty of medicine Ain Shams university

Professor Doctor / Mohamed Abdelrhaman El shayeb

Prof. of Allergy & clinical immunology Faculty of medicine Ain Shams university

Doctor / Eman Alsayed Ahmed

Lecture of internal medicine Faculty of medicine Ain Shams university 2011

Acknowledgement

First and foremost, thanks to Allah. To whom I relate any success in my life.

Words fail to express my deep appreciation and gratefulness to

Prof. Dr. Mohammed KamelSabry

Professor of Internal medicine, Faculty of Medicine, Ain Shams University, for his valuable advice, guidance and encouragement not only during all the stages of this research work but also in my career in Internal medicine.

I wish to express my deepest appreciation to **Prof. Dr.** Mohammed El Shaeb

Professor of Internal medicine, Faculty of Medicine, Ain Shams University, for his valuable advice, guidance and encouragement not only during all the stages of this research work but also in my career in Internal medicine. I'm deeply indebted to the great help offered by **Dr.** Eman Elsayed Ahmed, Lecturer of Internal medicine, Faculty of Medicine, Ain Shams University, for kind help and sincereadvice to ensure the accuracy of this work.

List of contents

Acknowledgement	1
List of contents	3
List of Abbreviations	4
List of Tables	6
List of Figures	8
Introduction and aim of the work	10
Chapter 1 Asthma	1
Chapter 2 The complement	47
system	
Chapter 3 Role of complement	62
in asthma	
Patients and Methods	72
Results and Statistics	87
Discussion	113
Conclusion	124
Summary	125
References	129
Arabic summary	170

List of abbreviation

ADAM33	A DisintegrinAnd Metalloproteinases
AHR	Airway hyperresponsivness
AP	Alternative pathway
ATS	Anaphylatoxines
BAL	Broncho-alveolar lavage
C1	Complement component 1
C2	Complement component 2
C3	Complement component 3
C4	Complement component 4
C5	Complement component 5

C6	Complement component 6
C7	Complement component 7
C8	Complement component 8
С9	Complement component 9
IgE	Immunoglobuline E
MAC	Membrane attack complex
MBL	Mannose binding lactine
PAMPS	Pathogen associated molecular pattern
PRRS	Pattern recognition receptors

List of tables

Table	Description	Page
Table (1)	Comparison between	88
	study groups as regarding	
	gender	
Table (2)	Descriptive analysis of	89
	study groups as regard	
	occupation	
Table (3)	Comparison between	90
	study groups as regard	
	PEFR	
Table (4)	Comparison between	91
	study groups as regarding	
	IgE level	
Table (5)	Descriptive analysis of	93
	asthmatic groups as	
	regard level of serum C5	
Table (6)	Descriptive analysis of	93
	asthmatic group as regard	
	level of sputum C5	
Table (7)	Comparison between	94
	study groups as regard C5	

	level in serum	
Table (8)	Comparison between study groups as regard C5 level in sputim	96
Table (9)	Comparison of PEFR among asthmatic groups	99
Table (10)	Comparison of serum IgE among asthmatic groups	101
Table (11)	Comparison of serum C5 among asthmatic groups	103
Table (12)	Comparison of sputum C5 among asthmatic groups	105
Table (13)	Correlation between serum C5 level and IgE level of asthmatic group	107
Table (14)	Correlation between sputum C5 and IgE level of asthmatic groups	109
Table (15)	Correlation between serum C5 levels and sputum C5 of asthmatic groups	111

List of figure

	Description	Page
Figure (1)	PEFR of the study	90
Figure	group Immunoglobulin E	92
(2)	(IgE) level of study) _
	groups	
Figure	Serum C5 level of	95
(3)	study groups	
Figure	Sputum C5 level of	97
(4)	study groups	
Figure	Degree of severity of	98
(5)	asthmatic groups	
Figure	Peak expiratory flow	100
(6)	rate (PEFR) of	
	asthmatic groups	
Figure	Immunoglobulin E	102
(7)	(IgE) level of	
	asthmatic groups	
Figure	Serum C5 level of	104
(8)	asthmatic groups	
Figure	Sputum C5 level of	106
(9)	asthmatic group	

Figure	Correlation between	108
(10)	serum C5 and IgE	
	level of asthmatic	
	groups	
Figure	Correlation between	110
(11)	sputum C5 level and	
	IgE level of asthmatic	
	groups	
Figure	Correlation between	112
(12)	serum C5 level and	
	sputum C5 level of	
	asthmatic groups	

Introduction

Asthma is characterized by a combination of chronic airway Inflammation, airway obstruction, and airway hyperresponsiveness (A H R) to various stimuli. It is though to be mediated primarily by adaptive immune responses mediated by allergen-specific CD4 T cells, Th2 cytokines, and allergen specific IgE, which lead to pulmonary inflammation and AHR (Peng et al., 2005).

Nagy and coworkers had found that Complement and its activated components, which from a central core of innate immune defense against bacterial, viral, and fungal invasions, can be activated through the classical pathway, the alternative pathway, and the lectin pathway (Nagy et al.,2003).

All three activation pathways converge at complement Component C5 prior to the generation of C5a and C5b-9, both of which induce potent biological responses, including tissue injury, inflammation, anaphylatoxic responses, and cell lyses at very low

concentrations (Takafuji et al., 1994) In addition, C5 can be activated after allergen exposure (Nagata et al., 1987)

Recent data from animal models of allergic asthma suggest that activated complement components, such as C5, provide a critical link between innate and adaptive immunity (Karp et al., 2000.)

Several experimental models for bronchial asthma have indicated that C5 and its activated components are involved in the development of airway inflammation and bronchoconstriction. Studies with various complement inhibitors markedly reduced AHR or airway inflammation in rodents (Lukacs et al.,2001). The potential involvement of C5 activation was also extended to clinical observations that the severity of clinical symptoms was correlated with the extent of C5 activation.

On the other hand, studies have shown that C5 deficiency leads to increased susceptibility to allergen – induced AHR in mice, and this finding is supported by

evidence of decreased production of II-12, a key Th1 cytokine reported to modulate the pathogenesis of asthma (Karp et al.,2000).

The key question at the center of the debate is whether C5 ant its activated components are proinflammatory or anti-inflammatory during the sensitization phase and the effector phase of the pathogenesis as suggested, respectively, by studies of C5 deficient (C5d) animals (Karp et al., 2000) and experiments involving intervention during the course of disease (Abe et al., 2001) Another key issue is whether Intrapulmonary activated complement components play a significant role in the pathogenesis and overcome the potential anti- inflammatory effect of activated C5 components on the adaptive immune system (Karp et al., 2000).

However, controversies remain regarding the involvement of C5 and its activated components in the pathogenesis of asthma (Gerard et al., 2002).

Aim of the Work

This study is designed to evaluate the role of complement C5 both intrapulmonary and in the serum in atopic asthma.

Asthma

Definition of asthma:

Asthma is defined by GINA., 2008, as follows: Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role.

The chronic inflammation is associated with airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread, but variable, airflow obstruction within the lung that is often reversible either spontaneously or with treatment.

Epidemology of asthma:

Asthma is a problem worldwide, with an estimated 300 million affected individuals.