

Ain Shams school of Medicine, Ain Shams University

RECENT ADVANCES IN BURN MANAGEMENT

Essay

Submitted by

Ahmed Mohamed Mahmoud Abouzaid

M.B.B.Ch Alexandria University

In partial fulfillment of Master Degree in general surgery

Supervised By

Prof. Dr. Amr Abd El Monam Sherif

Prof. of General Surgery Department, Faculty of Medicine, Ain Shams University.

Dr. Sherif Abdel Halim Ahmed El Maghrabi

Lecturer of General Surgery Department, Faculty of Medicine, Ain Shams University.

LIST OF CONTENTS

I.	Introduction.	
Histo	ory of Burns	1
Skin	Anatomy and Histology	3
Func	tions of the skin	7
II.	Pathophysiology.	
Patho	Pathophysiology of burn shock	
•	Hypovolemia and rapid edema formation	8
•	Mechanisms of burn edema.	10
•	Non-burned skin.	13
•	Altered cellular membrane and cellular edema	14
•	Mediators of burn injury	14
•	Hemodynamic consequences of acute burns	16
Patho	Pathophysiology of burn wound	
•	Disturbed skin functions	20
•	The heat required to cause skin burn	21
•	Histopathology of burn wounds	22
III.	Causes and magnitude of the problem.	
Etiol	ogical classification of burns	27
•	Thermal burns	27
•	Chemical burns.	29
•	Electrical burns	30
•	Friction burns.	32
•	Laser and radiation burns	32
Class	sification according to burn depth	33
•	First degree	33
•	Superficial second degree	34
•	Deep second degree	34
•	Third degree	35
Epidemiology of burns		36

		Index	
IV.	Diagnosis of burns.		
Burn	depth assessment.		38
•	Clinical evaluation.		39
•	Biopsy and histology		40
•	Measurement of tissue perfusion.		42
•	Indocyanine green video angiography		43
Nove	l techniques and future directions.		46
•	Optical measurement.		46
•	Nuclear imaging.		47
•	Noncontact and high-frequency ultrasound		48
•	Photo-acoustic techniques.		49
Burn	size assessment.		49
V.	Management of burns.		
Pre-h	ospital management		52
•	Management on site.		52
•	Transportation	••••	52
•	Initial assessment.	••••	53
Inpati	ient management	•••••	61
•	Resuscitation from burn shock	· • • • • •	61
•	Endpoints of resuscitation.		70
•	Oral resuscitation		71
•	Failure of burn shock resuscitation.		72
•	Fluid replacement following burn shock resuscitation	• • • • •	73
•	Physiologic and laboratory measurements		74
•	Care for burn wound.		78
•	Operative wound management		90
•	Excising deep burns		91
•	Timing of burn wound excision		91
•	Controlling blood loss		95
•	General principles for burn wound excision and grafting		97
	Investigations required prior to surgery		98

Recent Advances In Burn Management

	In	ndex
•	Skin grafting.	98
•	Essential criteria for skin grafting.	103
•	Donor areas.	104
•	Management of special types of burn	104
VI.	Recent advances in management	
Alter	native wound coverings	110
•	Classifications of skin substitutes	111
•	Synthetic skin substitutes.	114
•	Biologic and biosynthetic skin substitutes	118
Oxyg	gen therapy for burn management	155
•	Hyperbaric oxygen therapy (HBO)	155
•	Ozone therapy	160
Nega	tive pressure therapy for burn wounds	164
Use o	of Interactive/Bioactive dressing materials	168
Stem	cell therapy	174
Refer	rences	178
Sumn	nary	198
Arabi	ic Summary.	

LIST OF FIGURES

I.	Introduction.	
1-1	Anatomy of normal skin	3
1-2	Layers of the Epidermis.	5
II.	Pathophysiology.	
2-1	Landis-Starling equation.	9
2-2	Superficial Partial-Thickness Burn	22
2-3	Deep Partial-Thickness Burn	23
2-4	Full Thickness Burn	23
2-5	Jackson's three zones of injury	24
III.	Causes and magnitude of the problem.	
3-1	Flame burn of the trunk	28
3-2	Scald burn of a child's face	28
3-3	Blast injury of the lower extremities	28
3-4	Chemical burn of the face.	29
3-5	Difference between true electrical burn and flash burn	31
3-6	True electrical burn injury	31
3-7	Friction burn of the face.	32
3-8	Laser burn in the axilla.	33
3-9	First degree burn surrounded with hyperemia	33
3-10	Superficial dermal burn	34
3-11	Deep second degree burn in the lower limb of a child	35
3-12	Third degree burn of the trunk and thigh	35
IV.	Diagnosis of burns.	
4-1	Histological section of normal skin.	41
4-2	Histological section of superficial dermal burn with crust formed	41
4-3	Necrosis of full thickness epidermis and dermis	41
4-4	Indocyanine green video angiography	44
4-5	LDI-generated blood flow map	45
4-6	Wallace's rule of nines for adults and children	50

	Inde	ex
4-7	Lund and Browder chart.	51
V.	Management of burns.	
5-1	A schematic diagram of a hair follicle	79
5-2	Epidermal budding in a relatively deep second degree burn	79
5-3	Hand blister and way to deal with	80
5-4	Facial wounds treated by exposure technique and a modification on the technique	82
5-5	Closed dressing technique	84
5-6	Escharotomies for the upper limb and the hand	89
5-7	Escharotomies for the rest of body regions	89
5-8	Escharotomy for the lower limb	90
5-9	Escharotomy for the trunk with homeostasis	90
5-10	Graft harvesting knifes, manual and electrical	93
5-11	Fascial excision of a burn.	94
5-12	Schematic representation of tangential excision	94
5-13	Manoeuvre of tangential excision of a burn wound	94
5-14	Skin grafts harvesting according to thickness	101
5-15	Sheet graft	101
5-16	Pinch graft	102
5-17	Full thickness skin graft (FTSG) harvesting and application	102
VI.	Recent advances in management	
6-1	Use of Suprathel on a partial thickness burn	116
6-2	Use of xenograft on burned back	119
6-3	Use of Biobrane on hand burn.	121
6-4	Methods of application of Biobrane and the Biobrane glove	122
6-5	Dry collagen sheet	123
6-6	Use of collagen on burned child	124
6-7	Integra	125
6-8	Integra application on a facial burn	126
6-9	Use of Integra with V.A.C.	128
6-10	Use of Alloderm in burn scar incisions resurfacing	131
6-11	Dermagraft	132

Recent Advances In Burn Management

	Ind	.ex
6-12	Epicel cultured epidermal autografts	134
6-13	Cultured keratinocytes	135
6-14	Use of cultured keratinocytes on burned forehead	135
6-15	Platelets and its activation	139
6-16	Schematic representation of intracellular events during platelet activation.	140
6-17	Peeling of amniotic membrane from placenta	146
6-18	Amniotic membrane prior to use	146
6-19	Use of Amniotic membrane on burn wound	147
6-20	Diagrammatic illustration of meshed allograft overlay technique	148
6-21	Allograft on burned child	148
6-22	Recell harvesting kit	149
6-23	Use of Recell technique on hand burn	152
6-24	Use of Recell in scar modulation	153
6-25	Monoplace hyperbaric oxygen chamber	156
6-26	Multiplace hyperbaric oxygen chamber from outside	156
6-27	Multiplace hyperbaric oxygen chamber from inside	157
6-28	HBOT on deep partial thickness to full thickness burn	159
6-29	HBOT on face burn	160
6-30	Ozone generator	163
6-31	Different methods of treatment with Ozone	163
6-32	V.A.C device	166
6-33	Application of V.A.C on burned hand	167
6-34	Results of V.A.C use on the burned hand	167

LIST OF TABLES

II.	Pathophysiology	
2-1	Cardiovascular and Inflammatory Mediators of Burn Shock	15
2-2	Pathophysiological effect of major burn shock	19
V.	Management of burns	
5-1	Burn depth estimation.	57
5-2	American Burn Association's grading system for burn severity and patient disposition	59
5-3	Burn resuscitation formulas, current and past	68
5-4	Formulas for estimating pediatric resuscitation needs	70
5-5	The content of various solutions used for oral resuscitation	72
VI.	Recent advances in management	
6-1	First-line interactive/bioactive dressings	169

LIST OF ABBREVIATIONS

TBSA Total Body Surface Area.

CO Cardiac Output.

SIRS Systemic Inflammatory Response Syndrome.

SVR Systemic Vascular Resistance.

PVR Pulmonary Vascular Resistance.

GIT Gastro-Intestinal Tract.

ACS Abdominal Compartment Syndrome.

IAH Intra-Abdominal Hypertension.

RBF Renal Blood Flow.

GFR Glumerular Filtration Rate.

ICP Intra-Cranial Pressure.

FRC Functional Residual Capacity.

BPP Boiled Potato Peel.

ICG Indo-Cyanine Green.

LDPM Laser Doppler Perfusion Monitoring.

LDI Laser Doppler Imaging.

LDPI Laser Doppler Perfusion Imaging.

MIBI Methoxy-Iso-Butyl-Isonitrile.

Tc Technetium.

ABA American Burn Association.

BUN Blood Urea Nitrogen.

LR Lactated Ringer.

HLS Hypertonic Lactated Saline.

D₅W 5 percent dextrose in water.

PALS Pediatric Advanced Life Support.

CVP Central Venous Pressure.

PAC Pulmonary Artery Catheter.

PT Prothrombin Time.

PTT Partial Thromboplastin Time.

DIC Disseminated Intravascular Coagulation.

MEBO Moist Exposed Burn Ointment.

SSD Sliver-Sulpha-Diazine.

CK Creatinine Kinase.

LDH Lactated De-Hydrogenase.

SGPT Serum Glutamic-Pyruvic Transaminase.

CPK Creatinine Phospho-Kinase.

CK-MB Creatine Kinase Myocardial Band.

SSG Split-thickness Skin Graft. FSG Full-thickness Skin Graft.

ABG Arterial Blood Gases.

ARS Acute Radiation Syndrome.

CEA Cultured Epithelial Autografts.

CSS Cultured Skin Substitutes.

ECM Extra-Cellular Matrix.

BDS Bilayer-Dermal Substitute.

VAC Vacuum Assisted Closure.

ADM Acelluar Dermal Matrix.

AIDS Acquired Immune-Deficiency Syndrome.

PRP Platelet Rich Plasma.

GFs Growth Factors.

EGF Epidermal Growth Factor.

PDGF Platelet Derived Growth Factors.

TGF Transforming Growth Factor.

KGF Keratinocyte Growth Factor.

FGF Fibroblast Growth Factor.

VEGF Vascular Endothelial Growth Factor.

CTGF Connective Tissue Growth Factor.

GM-CSF Granulocyte/Macrophage Colony-Stimulating Factor.

IGF Insulin-like Growth Factor.

TNF Tumour Necrosis Factor.

IL Inter-Leukin.

PG Prosta-Glandin.

PDRNs Poly-Deoxy-Ribo-Nucleotides.

COX Cyclooxygenase.

NO Nitric Oxide.

NADPH Nicotinamide Adenine Dinucleotide Phosphate.

HLA Human Leucocytic Antigine.HBO/ HBOT Hyperbaric oxygen therapy.SAP Sub-Atmospheric Pressure.

NPWT Negative Pressure Wound Therapy.

DD Degree of Deacetylation.

PVA Poly-Vinyl Alcohol.

iPSCs Induced Pluripotent Stem Cells.

SC Stem Cells.

ESC Embryonic Stem Cells.

ASC Adult Stem Cells.

HSCs Hematopoietic Stem Cells.

BMSCS Bone Marrow-Derived Stem Cells.

ADSCS Adipose Tissue-Derived Stem Cells.

MSCs Mesenchymal Stem Cells.

Acknowledgement

Praise to "Allah", the most gracious, most merciful and compassionate for blessings given to us, without which, nothing can stand complete and guides us to the right way.

I would like to express my deepest appreciation and endless gratitude to **Professor Dr. Amr Abd El Monam Sherif**, Professor of General Surgery Department, Faculty of Medicine, University of Ain Shams, for giving me the privilege of working and for his valuable supervision, instructions and encouragement through the whole work.

I owe a special depth of thanks to **Dr. Sherif Abdel Halim**Ahmed El Maghrabi lecturer in general Surgery Department,

Faculty of Medicine, University of Ain Shams, for his endless help
and support through this study and kindness to review each step in
this work. He liberally gave me of his time, patience and
experience.

I am also delighted to express my deepest gratitude and cordial thanks to my beloved wife **Arch.** Nourhan with our lovely son Yamen, father, mother, brother and best friends Dr. Mohammed Soffar & Dr. Abdul-Fattah Nasr whom without their continuous encouragement, support and hand to hand help I could not have finished this work.

My great appreciation is extended to all those who shared either practically or morally in the accomplishment of this work.

THANKS TO ALL

Ahmed M. Abouzaid....

Introduction

I. Introduction

Burn trauma is as old as the discovery of fire in the history of mankind and medicine is built on the best of the past.

A burn is a type of injury (coagulative necrosis) caused by heat, electricity, chemicals, light, radiation or friction to skin and deep tissues.

Burn injuries represent one of the most important public health problems faced by both developing as well as industrialized nations today, it's also an extremely stressful experience for both the victims as well as their families physically, psychic and financially.

Study of 'history of burns' contributes to a review of accomplishments and errors, it teaches us where we started from, where we stand today, in what direction we are marching and guides us for the future, in an address to the Royal College of Surgeons, Churchill remarked; "The longer you look back, the further you can look forward".⁽¹⁾

History of Burns:

In considering the history of the treatment of burn injuries <u>in the</u> <u>ancient ages</u>, Hippocrates (430 BC) used swine's semen, resin, bitumen and Oak bark solutions in the treatment of burns.

Chinese (600-500 BC) used extracts of tea leaves.

Smith papyrus (1500 BC Egyptians) used gum and goat's milk mixed with mother's milk and strips soaked in oil.

Celsius (ancient Rome) advocated honey and bran.

Glen (ancient Rome) described vinegar or wine in treatment of burns. (2)

<u>In the middle ages</u> Clowes (1596) wrote on gun powder burns, and described multiple types of therapy on different body parts and also suggested oily dressings containing many drugs.

Fabricus Hildanus (1610) was the first to classify burns into three categories and also showed pictorially the early successful surgical release of hand contractures.

Introduction

H Earle (1799) described the use of ice and iced water for analgesia and the prevention of edema.

Lisfranc (1835) described calcium chloride dressings. (2)

However <u>in the modern ages</u> of burns history Cotton dressings were first discussed in a Glasgow medical journal (1928).

By (1930) the understanding of burn pathology took a great leap forward when Underhill studied a group of patients and analyzed content of blister fluid and determined that burn shock was due to fluid loss and not due to toxins.

Since 1942 extensive studies by Cope and Moore was done for treating burn shock.

Dressings remained popular until Wallace advocated exposure for face, buttock and perineum (1949).

Formulas gradually evolved calculating fluid losses, Evans (1952) used burn surface area and weight as the principle variable, Moyer *et al* introduced first crystalloid only resuscitation (1965), Brooke formula was a modification of Evans formula and utilized salt, colloid and water. ⁽³⁾

In the early 1970's Charles Baxter developed the Parkland formula which determined that patients required 4 ml/kg/%TBSA burns in the first 24 hours and it is most frequently used today. (4)

Also in the early 1970's Monafo started examining the efficacy of using a hypertonic saline solution for resuscitation and the concept was that it would shift fluid from intracellular to intravascular space, by 1990's Warden suggested the use of modified hypertonic resuscitation using LR solution. (4)

Today tremendous advances have been made in the management of burn injury in the past twenty five years. Mortality and morbidity have been markedly reduced due to overall major improvements in critical care, metabolic support, infection control, fluid resuscitation strategies and wound management. ⁽⁵⁾

Introduction

Skin Anatomy and Histology:

Understanding a burn injury requires recognition of anatomy and physiology of the skin. ⁽⁶⁾

Skin is the largest organ, covering a surface area of 1.5 to 2.0 m² in an adult;⁽⁷⁾ it's a bilayer organ with many protective functions essential for survival (Figure 1.1)⁽⁶⁾

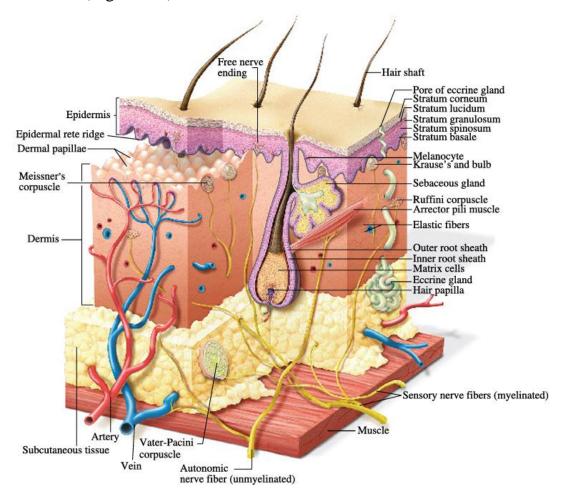


Figure 1.1 Anatomy of normal skin. (6)

Skin consists of thin outer layer ectodermal in origin "the Epidermis" and a thick fibrous inner layer mesodermal in origin "the Dermis", the two layers are separated by a basement membrane or basal lamina. ⁽⁷⁾