PHYTOCHEMICAL AND BIOLOGICAL STUDY ON CERTAIN PLANTS BELONGING TO FAMILY SCROPHULARIACEAE

Thesis Submitted to

Faculty of Pharmacy Ain Shams University

In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy in Pharmaceutical Sciences
(In Pharmacognosy)

By

Fadia Salah Youssef

B. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2004
M. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2010

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt
2014

Under the Supervision of

ABDEL NASSER B. SINGAB, Ph.D.

Professor of Pharmacognosy Dean, Faculty of Pharmacy Ain Shams University

MOHAMED LOTFY ASHOUR, Ph.D.

Lecturer of Pharmacognosy Faculty of Pharmacy Ain Shams University

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt
2014

ACKNOWLEDGEMENT

I would like to express my gratitude and appreciation to the members of the advisory committee:

Prof. Dr. Abdel Nasser B. Singab, Professor of Pharmacognosy, Dean of Faculty of Pharmacy, Ain Shams University for suggesting the research point. Words are not enough to express my deep gratitude and profound thanks to him for his kind supervision, indispensable advice, valuable comments, generous support, sincere guidance and continuous encouragement throughout the course of study, setting an example to what a dedicated professor, scientist and advisor should be. I am truly proud to be one of his students. His constructive criticism and suggestions helped me to improve this work through the experimental investigations as well as writing and revising the thesis.

Dr. Mohamed Lotfy Ashour Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for his kind supervision, indispensable advice, valuable comments. No words can express my gratitude to him for his helpful suggestions, valuable assistance and constant guidance throughout the whole study. His friendly attitude and meticulous observations have made the work very interesting.

Special thanks to **Dr. Rola Milad Labib**, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for her great effort, endless patience, helpful guidance, constant support and continuous encouragement while working and accomplishing the botanical section.

Great thanks to **Prof. Dr. Hesham El-Beshbishy**, Professor of Biochemistry, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia, for hosting the in vivo biological study.

Many thanks to **Dr. Mohamed El-Shazley**, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University for carrying out the in vitro cytotoxicity and anti-allergic assays in College of Pharmacy, Kaohsiung Medical University, Taiwan.

Alot of thanks to **Dr. Sherif Ebada**, Lecturer of Pharmacognosy, Faculty of Pharmacy, Ain Shams University for carrying out the LC-MS runs at Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Duesseldorf, Germany.

Also, I would like to express my deep thankfulness to both **Prof. Dr. Michael Wink**, Professor of Biology, Head of Biology Department and Director at the Institute of Pharmacy and Molecular Biotechnology, Heidelberg University; for hosting the GLC-MS, GLC-FID and NMR analysis and **Prof. Dr. Fang-Rong Chang**, Professor of Pharmacognosy and Director of Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, for hosting the cytotoxicity and anti-allergic assays at their institutes.

Special thanks to all my dear **professors** especially **Prof. Dr. Mohamed M. Al-Azizi**, Professor of Chemistry of Natural Drugs, Faculty of Pharmacy, Ain Shams University for his brilliant suggestions, sincere guidance and endless valuable assistance to us all in the department, we all considered him as our great teacher and professor in all aspects of life and above all our dear loving father.

Many thanks go to my **colleagues** for their cooperation, support, valuable comments and the friendship we share, hoping to continue so ever.

I cannot find enough words to express my deep love and thanks for my parents: for their continuous care, love and support. They sacrificed their time and efforts to help me to achieve this work.

Finally, I would like to thank my dear husband **Dr. Albert Victor**, for his continuous encouragement, support and most of his patience for which I am truly grateful.

I dedicate this work to my beloved children **Fady** and **Marlie**, the most precious treasure in my life, whom I give my love, care and I hope that they will always be proud of me.

Fadia Salah Youssef

2014

Table of contents

List of Figures	i
List of Tables	iv
List of abbreviations	\mathbf{v}
Introduction	1
Literature Review:	4
Family Scrophulariaceae	
Genus Eremophila	4
Eremophila species	5
1 Ethnobotany	5
2 Biological activities	
3 Phytochemistry	18
Material and methods	68
1 Material	68
2 Apparatus	75
3 Methods	77
Chapter 1: Botanical and genetic characteristics of Eremophila maculata (Ker Gawl.) F.	
Muell and Eremophila purpurascens Chinnock (Scrophulariaceae)	96
1 Botanical study of leaves and stems of Eremophila maculata and Eremophila purpurascen	96
2 DNA profiling of E. maculata and E. purpurascens using Random Amplified Polymorphic-	
DNA Polymerase Chain Reaction Technique (RAPD-PCR)	121
3 Discussion	128
Chapter 2: Biological screening of the leaf methanol extract of <i>Eremophila maculata</i> (Ker	129
Gawl.) F. Muell (Scrophulariaceae)	
1 Experimental	129
2 Results	130
2.1 Cytotoxicity	130
2.2 Antimicrobial and antiviral activity	132
2.3 Antiallergic activity	136
2.4 In <i>vitro</i> antioxidant and hepatoprotective activity	137
2.5 In <i>vivo</i> hepatoprotective activity	143
2.6 In vivo antidiabetic activity	145
3 Discussion	146
Chapter 3: Chemical composition of the leaf methanol extract of <i>Eremophila maculata</i>	151
(Ker Gawl.) F. Muell (Scrophulariaceae)	151
1 Experimental	151
2 Results and discussion	156
2.1 Phytochemical Screening of <i>E. maculata</i> and <i>E. purpurascens</i> leaves and stems	156
2.2 Phytochemical study of <i>E. maculata</i> leaves	156
2.2.1 Compounds isolated from the <i>n</i> -hexane fraction of the <i>E. maculata</i> leaves total	
methanol extract	157
2.2.1.1 Compound 1: β -Sitoserol (1a) + Stigmasterol (1b)	157
2.2.1.2 Compound 2: (+)-Epieudesmin	161
2.2.1.3 Compound 3: Phillygenin	169
2.2.1.4 Compound 4: Prunasin	175

TABLE OF CONTENTS

2.2.2 Compounds isolated from the ethyl acetate fraction of the <i>E. maculata</i> leaves total	
methanol extract	181
2.2.2.1 Compound 5: Pinoresinol-4- O - β -D-glucoyranoside	181
2.2.2.2 Compound 6: Leucoseptoside A	190
	196
	203
	206
	212
2.2.2.8 Compound 11: Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-	
glucopyranoside	21
	227
Chapter 4: Chemical composition and biological activity of <i>E. maculata</i> essential oil	231
1 Results	231
1.1 GC analysis of the oil	231
	246
2 Discussion	248
General summary	250
Conclusions and Recommendations	261
References	263
Arabic Summary	

LIST OF FIGURES

List of figures

1	Macromorphology of E. maculata showing: entire plant, leaf, flower, leafy branch with	
	flowers and leafy branch	98
2	Macromorphology of <i>E purpurascens</i> showing: entire plant, leafy branch, leaf and flower	
3	1 67	102
4		104
5	Micromorphology of E. maculata young stem branch	107
6	Micromorphology of <i>E. maculata</i> old stem branch	108
7	Powdered stem branch of <i>E. maculata</i>	109
8	Micromorphology of E. purpurascens leaf	112
9	Powdered leaf of <i>E. purpurascens</i>	114
10	Micromorphology of <i>E. purpurascens</i> young stem branch	115
11	Micromorphology of <i>E. purpurascens</i> old stem branch	116
12	Powdered stem branch of <i>E. purpurascens</i>	117
	RAPD-PCR products for E. maculata (1), E. purpurascens (2) using ten decamer primers	123
	Cytotoxic effects of EMM on (A) PC3, (B) A549 and (C) HepG2 after 72 hrs. incubation	
	using SRB cytotoxicity assay and measured spectrophotometrically at 564 nm	131
15	The antiviral activity of different EMM concentrations using the direct plaque reduction	
	assay	135
16	Inhibition% of β -hexosaminidase release by EMM in A23187 sensitized RBL-2H3 cell line	
	measured spectrophotometrically at 405 nm	136
17	The radical scavenging activity of EMM on the DPPH radicals measured	
	spectrophotometrically at 517 nm	137
18	Effect of EMM on AST (A) and ALT (B) release in HepG2 cells challenged with CCl ₄	
_	measured spectrophotometrically at 546 nm using spectrophotometric diagnostic kits	140
19	Effect of EMM on GSH (A) and SOD (B) levels in HepG2 cells challenged with CCl ₄	141
	Effect of EMM on total antioxidant capacity (TAC) in HepG2 cells challenged with CCl ₄	
	measured colorimetrically at 505 nm	142
21	Effect of intraperitoneal injection of EMM (20 mg/kg) on TAM-induced alterations in	
	serum ALT (A), AST (B) TBARS (C) and TNF- α (D) levels	144
22	Influence of oral intake of EMM or GLB to STZ-diabetic rats on FBG (A) and serum insulin	
	(B) at a dose of 20 mg/kg	145
22		
	Scheme showing the chromatographic separation of the <i>n</i> -hexane fraction	154
	Scheme showing the chromatographic fractionation of the ethyl acetate fraction	155
(0)	mpound 1	150
	25 ¹ H NMR spectrum of Compound 1	159
٦.	26 APT spectrum of Compound 1	160
(0)	mpound 2	1.00
	27 ESI ⁺ MS spectrum of (+)-Epieudesmin	162
	28 EI MS spectrum of (+)-Epieudesmin	163
	29 ¹ H NMR spectrum of (+)-Epieudesmin	164
	30 APT spectrum of (+)-Epieudesmin	165
	31 ¹ H, ¹ H COSY spectrum of (+)-Epieudesmin	166
	32 HSQC spectrum of (+)-Epieudesmin	167
	33 HMBC spectrum of (+)-Epieudesmin	168

LIST OF FIGURES

Compound 3	}	
	34 ¹ H NMR spectrum of Phillygenin	170
	35 APT spectrum of Phillygenin	171
	36 ¹ H, ¹ H COSY spectrum of Phillygenin	172
	37 HSQC spectrum of Phillygenin	173
	38 HMBC spectrum of Phillygenin	174
Compound 4		
F	39 ¹ H NMR spectrum of Prunasin	176
	40 APT spectrum of Prunasin	177
	41 ¹ H, ¹ H COSY spectrum of Prunasin	178
	42 HSQC spectrum of Prunasin	179
	43 HMBC spectrum of Prunasin	180
Compound 5		100
compound t	44 ESI ⁺ MS spectrum of Pinoresinol-4- <i>O</i> -β-D-glucoyranoside	183
	45 EI MS spectrum of Pinoresinol-4- O - β -D-glucoyranoside	184
	46 1 H NMR spectrum of Pinoresinol-4- O - β -D-glucoyranoside	185
	47 APT spectrum of Pinoresinol-4- O - β -D-glucoyranoside	186
	48 1 H, 1 H COSY spectrum of Pinoresinol-4- O - β -D-glucoyranoside	187
	49 HSQC spectrum of Pinoresinol-4- $O-\beta$ -D-glucoyranoside	188
	50 HMBC spectrum of Pinoresinol-4- O - β -D-glucoyranoside	189
Compound (10)
Compound	51 ¹ H NMR spectrum of Leucoseptoside A	191
	52 APT spectrum of Leucoseptoside A	192
	53 ¹ H, ¹ H COSY spectrum of Leucoseptoside A	193
	54 HSQC spectrum of Leucoseptoside A	194
	55 HMBC spectrum of Leucoseptoside A	195
Compound 7		193
Compound	56 ESI ⁺ MS spectrum of Martynoside	197
	57 ¹ H NMR spectrum of Martynoside	198
	58 APT spectrum of Martynoside	199
	50 ¹ H ¹ H COSV apportum of Martynoside	200
	59 ¹ H, ¹ H COSY spectrum of Martynoside	200
	60 HSQC spectrum of Martynoside	201
Commonad	1	202
Compound 8		204
	62 EST MS spectrum of Verbascoside	204
C 14	63 ¹ H NMR spectrum of Verbascoside	205
Compound 9		207
	64 ¹ H NMR spectrum of Campneoside II	207
	65 APT spectrum of Campneoside II	208
	66 ¹ H, ¹ H COSY spectrum of Campneoside II	209
	67 HSQC spectrum of Campneoside II	210
Q	68 HMBC spectrum of Campneoside II	211
Compound 1		010
	69 ¹ H NMR spectrum of Phillyrin	213
	70 APT spectrum of Phillyin	214
	71 ¹ H, ¹ H COSY spectrum of Phillyrin	215

LIST OF FIGURES

72 HSQC spectrum of Phillyrin	216
73 HMBC spectrum of Phillyrin	217
Compound 11	
74 ¹ H NMR spectrum of Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-	
glucopyranoside	221
75 APT spectrum of Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-glucopyranoside	222
76 1 H, 1 H COSY spectrum of Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-	
glucopyranoside	223
77 HSQC spectrum of Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-glucopyranoside	
	224
78 HMBC spectrum of Pinoresinol-4- O -[6"- O -(E)-feruloyl]- β -D-	
glucopyranoside	225
79 Compounds isolated from <i>E. maculata</i> leaves methanol extract	22ϵ
80 LC-ESI-MS chromatogram of <i>E. maculata</i> leaves methanol extract	228
81 Compounds tentatively identified from <i>E. maculata</i> leaves methanol extract using LC-ESI-	
MS chromatogram in comparison with published data	229
82 Total ion chromatogram of <i>E. maculata</i> flower essential oil	232
83 Total ion chromatogram of <i>E. maculata</i> leaves essential oil	232
84 Total ion chromatogram of <i>E. maculata</i> fresh stem essential oil	233
85 Total ion chromatogram of E. maculata air-dried stem essential oil	233

List of Tables

1	Common traditional uses of <i>Eremophila</i> species	7
2	Summary of the most relevant biological activity of different <i>Eremophila</i> species	15
3	Structures and distribution of secondary metabolites of <i>Eremophila</i>	24
	3.1 Chemical structures of the isolated monoterpenes and their derivatives	24
	3.2 Chemical structures of the isolated furanosesquiterpenes	27
	3.3 Chemical structures of the isolated bicyclic sesquiterpenes	31
	3.4 Chemical structures of the isolated octahydronaphthalene-2-carboxylic acid	37
	derivatives	
	3.5 Chemical structures of the isolated tricyclic sesquiterpenes	38
	3.6 Chemical structures of the isolated diterpenes	39
	3.7 Chemical structures of the isolated sterols and triterpenes	60
	3.8 Chemical structures of the isolated fatty acids	61
	3.9 Chemical structures of the isolated flavonoid	62
	3.10 Chemical structures of the isolated lignans	64
	3.11 Chemical structures of the isolated phenylpropanoids	66
	3.12 Chemical structures of the isolated miscellaneous compounds	67
4	Microscopical measurements of the different organs of <i>E. maculata</i> and <i>E. purpurascens</i>	
	(in μm)	119
5	Molecular size in base pairs of amplified DNA fragments produced by ten decamer	
	primers in E. maculata (1) and E. purpurascens (2)	124
6	Total numbers of RAPD-PCR fragments, distribution of monomorphic (common) and	
	polymorphic bands and similarity coefficients generated by ten decamer arbitrary primers	
	in E. maculata (1) and E. purpurascens (2)	127
7	IC ₅₀ values (μg/ml) for the cytotoxic effects of EMM on the growth of different cancer	
	cells	130
8	Mean inhibition zones of EMM against different pathogens determined by the agar	100
	diffusion method	133
9	Minimum Inhibitory Concentrations (MICs) of EMM against different pathogens	100
	determined by the agar plate method	134
1 (D Effect of different EMM concentrations on the viral replication using the direct plaque	10.
• '	reduction assay	135
1	1 Effect of EMM on AST, ALT, GSH, SOD and TAC levels in HepG2 cells challenged	133
•	with CCl ₄	139
1′	2 Effect of intraperitoneal injection of EMM (20 mg/kg) on TAM-induced alterations in	13)
-	serum ALT, AST, TBARS and TNF-α levels	143
1 ′	3 Influence of oral intake of EMM or GLB to STZ-diabetic rats on FBG and serum insulin	1 10
٠,	at a dose of 20 mg/kg	145
1 4	4 Results of phytochemical screening of <i>E. maculata</i> and <i>E. purpurascens</i> leaves and	1 15
•	stems	156
14	5 Volatile constituents identified in the leaf, flower, fresh and air-dried stem oils of <i>E</i> .	150
1,	maculata	234
14	6 Minimum inhibitory concentrations (MIC) and minimum microbicidal concentrations	4ر2
Τ,	(MMC) of <i>E. maculata</i> leaf and flower essential oils against different pathogens using	
	the broth micro-dilution method	247
	THE OPENI THE OF CHICALOU HIGH COLOR	∠+/

List of abbreviations

ADP Adenosine diphosphate Alanine transaminase ALT

One-way analysis of variance ANOVA

APT Attached proton test **AST** Aspartate transaminase

American type culture collection **ATCC**

BSA Bovine serum albumin.

cAMP Cyclic adenosine monophosphate

Carbon tetrachloride CCl_4 CDC₁₃ Deuterated chloroform CD₃OD Deuterated methanol CFU Colony forming unit

¹³C-NMR Carbon-13-Nuclear Magnetic Resonance **COPD** Chronic obstructive pulmonary disease

Cycloxygenase-1 COX-1 Cycloxygenase-2 COX-2 CPE Cytopathic effect CPR

Coronary perfusion rate

N-cetyl-N, N, N-trimethylammonium bromide **CTAB**

Doublet d

Doublet of doublet dd

DMEM Dulbecco's Modified Eagle Medium

DMSO- d_6 Dimethylsulfoxide-d₆ Deoxyribonucleic acid DNA

Two-dimensional nuclear magnetic resonance spectroscopy 2D-NMR

DNP Dinitrophenyl

Dinitrophenyl -Bovine Serum Albumin **DNP-BSA** Deoxyribonucleotide triphosphates dNTP'S 2,2-Diphenyl-1-picrylhydrazyl radical DPPH. **EDTA** Ethylenediaminetetraacetic acid

Electron ionization or Electron impact- Mass Spectrometry EI-MS

ELISA Enzyme-linked immunosorbent assay Eremophila maculata flower essential oil **EMF EML** Eremophila maculata leaves essential oil

EMM Eremophila maculata leaves total methanol extract

EMSD Eremophila maculata dry stem essential oil **EMSF** Eremophila maculata fresh stem essential oil **ESI-MS** Electrospray ionization – Mass Spectrometry

eV Electron volt

FBG Fasting blood glucose

Figure Fig. Gram g

GCGas liquid chromatography

GC-FID Gas liquid chromatography– flame ionization detector

Gas liquid chromatography–mass spectrometry GC-MS

LIST OF ABBREVIATIONS

GLB Glibenclamide

Glc. Glucose

GLUT2 Glucose transporter isoform 2 GPx Glutathione peroxidase GS Genetic similarity

GSH Reduced Glutathione HCMV Human cytomegalovirus

HEPES 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

H,H-COSY H,H Correlated spectroscopy

HMBC Heteronuclear multiple-bond correlation spectroscopy

¹H-NMR Proton Nuclear Magnetic Resonance HPLC High Performance Liquid chromatography

Hrs. Hours

HSQC Heteronuclear Single Quantum Coherence

HSV-1 Herpes simplex virus 1 5-HT 5-Hydroxytryptamine

Hz Hertz

IC₅₀ The half maximal inhibitory concentration

IgEImmunoglobulin Ei.p.IntraperitoneallyIU/mlInternational unit/mlJ valueCoupling constant

Kg Kilogram KI Kovats index

1 Litre

LC-MS Liquid chromatography—mass spectrometry

5-LO 5- Lipoxygenase. LPO Lipid peroxidation

m Meter multiplet

MBC Minimum bactericidal concentration

mg Milligram

mg/kg Milligram per kilogram mg/ml Milligram per milliliter

MHz Megahertz

MIC Minimum inhibitory concentration

min. Minute ml Milliliter

ml/min Milliliter per minute

mm Millimeter mM Millimole

MMC Minimum microbicidal concentration

MRSA Methicillin – resistant *Staphylococcus aureus*

MTT 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

m/z Mass to charge ratio

NAD+ Nicotinamide adenine dinucleotide

LIST OF ABBREVIATIONS

ηgm Nanogram nm Nanometer NT Not tested

PBS Phosphate buffered saline PFU Plaque-forming unit

p-NAG *p*-Nitrophenyl-N-acetyl-D-glucosaminide

ppm Part per million

PTLC Preparative Thin layer chromatography

RAPD-PCR Random Amplified Polymorphic DNA- Polymerase Chain Reaction

RCMB Regional center of mycology and biotechnology

 $\begin{array}{ccc} R_f & & Retardation \ factor \\ RI & Retention \ index \\ RNA & Ribonucleic \ acid \end{array}$

ROS Reactive oxygen species
RP-18 Reversed phase-18
rpm Revolution per minute

RPMI Roswell Park Memorial Institute

RRV Ross River Virus

s Singlet

S.D. Standard deviation
SOD Superoxide dismutase
SM Secondary metabolites
SRB Sulforhodamine B

STE Standard error of the mean

STZ Streptozotocin

t Triplet

TAC Total antioxidant capacity

TAM Tamoxifen Citrate

TBARS Thiobarbituric acid reactive substances

TLC Thin layer chromatography

TMS Tetramethylsilane

TNF-α Tumor necrosis factor- alpha

T.S. Transverse section

μg Microgram

μg/ml Microgram/milliliter

 $\begin{array}{ccc} \mu l & & Microliter \\ \mu m & & Micrometer \\ \mu M & & Micromole \\ UV & & Ultraviolet \end{array}$

VRE Vancomycin- resistant Enterococcus

 $\begin{array}{ccc} VSV & Vesicular Stomatitis virus \\ v/v & Volume per volume \\ v/w & Volume per weight \\ XO & Xanthine oxidase \\ \delta & Chemical Shift \end{array}$

Introduction

Natural products are considered the major source of lead compounds required for future drug development programs (Newman et al., 2003). Throughout ages, humans have traditionally relied on plants, animals and minerals for their basic needs, such as for food, protection against enemies, hunting, healing of infections and health disorders. A number of traditional medicinal systems that have been used for centuries have evolved and today are a source of interesting drugs for Phytotherapy (Singab et al., 2013).

Plant materials remain an important component in combating serious diseases in the world; from therapeutic approaches to several pathologies. (Iwu et al., 1999). Nowadays, it is very interesting to emphasize that despite of the tremendous increase in manufacturing synthetic and/or semi-synthetic therapeutic agents to face the global demand for new drugs, approximately 80% of the world's inhabitants rely mainly on traditional herbal medicines for their health care (Owolabi et al., 2007).

Reports on pharmacological effects of medicinal plants are growing almost exponentially. However, it is very difficult to attribute the pharmacological activity in a multi-component mixture, as in plant extracts consisting of a diversity of secondary metabolites, to only a single compound of the extract, but there is good evidence that the secondary metabolites, present in a mixture, exhibit additive or even synergistic effects. They are able to interfere with many molecular targets in the cells (Wink, 2008).

Scrophulariaceae is a large family with almost 87 genera and 4800 species. Plants of this family are widely used in traditional medicine and phytotherapy (Kadereit, 2004). The corresponding biological activities are related to their richness in secondary metabolites such as phenylpropanoids, iridoid glucosides, and terpenoids with anti-inflammatory, antinociceptive, wound healing and antimicrobial activities (Diaz et al., 2004, Akdemir et al., 2011). In addition, many species are rich in polyphenols, flavolignans and phenolic acids, which exhibit antiprotozoal (Tasdemir et al., 2005) antioxidant (Singab et al., 2005, Jeong et al., 2009), antibacterial (Liu et al., 2006) and cytotoxic properties (Afifi et al., 1993).

Eremophila (Scrophulariaceae) is an endemic Australian genus with 214 species, which is commonly known as Fuchsia bush, Emu bush or Poverty bush. Plants of this genus played an important role for the Australian Aborigines who used them widely for medicinal and ceremonial purposes (Singab et al., 2013).

Phytochemical investigations of the genus *Eremophila* lead to isolation and identification of more than 200 secondary metabolites (SM) from several classes (Ghisalberti, 1993). Major SM include diterpenes (eremane, cembrane, decipiane, and viscidane type); others are triterpenoids, verbascosides, cyanogenic glucosides, fatty acids, phenylpropanoids, lignans, and flavonoids (Ghisalberti, 1994) to which many biological and pharmacological activities such as antimicrobial (Tomlinson and Palombo, 2005), antiviral (Semple et al., 1998), antiproliferative (Beattie et al., 2011), anti-inflammatory (Liu et al., 2006), and immunomodulatory activities (Rogers et al., 2000) have been attributed.

Although, many studies have been carried out on many species of this genus and have generated immense data about the chemical composition and corresponding biological activity of extracts and isolated secondary metabolites, there are still a lot to be explored.

Reports on the botanical study of many *Eremophila* species were fragmentary. Lack of comprehensive botanical study on different plant organs makes it obligatory to carry out a comparative study in order to find out the main diagnostic features of the different organs of its species to help in their identification. Botanical characterization of closely related plant species is nowadays greatly supported *via* examination of various decisive genetic criteria such as isoenzymes, DNA or seed proteins (Rogl et al., 1996). The concept of DNA fingerprinting has been, in this respect, increasingly applied to establish the ancestry of plants. It is reported as a promising tool for the authentication of medicinal plant species and especially useful in species or varieties that are morphologically and/or phytochemically indistinguishable (Rola Milad et al., 2013).

Also, fewer studies have been done to identify the volatile oil composition of some *Eremophila* species such as *E. longifolia* (Smith et al., 2010) and *E. mitchellii* (Beattie et al., 2011). To the best of our knowledge, the essential oil composition as well as the antimicrobial activity of *E. maculata* flower, leaf and stem oils have not been reported yet.

Concerning the biological activities of many *Eremophila* species, there are a lot to be investigated, like determining the effect of these plants, their extracts as well as their isolated compounds on the blood glucose level, their antibacterial, antiviral, antifungal, antinflammatory and cytotoxic activities. Also, their effect on the liver has to be considered where liver is the chief site for intense metabolism and excretion.