STUDY OF SERUM VITAMIN D LEVEL IN STABLE CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATIENTS

Thesis

Submitted for Partial Fulfillment of Master

Degree in Chest Diseases and Tuberculosis

Presented by

Dina Ruby Abd El sadek

M.B., B.Ch.

Under Supervision of

Professor/ Adel Mahmoud Khattab

Professor of Chest Diseases & Head of Chest Department Faculty of Medicine - Ain Shams University

Doctor/ Tamer Mohamed Ali

Lecturer of Chest Diseases
Faculty of Medicine - Ain Shams University

Doctor/ Rania Ahmed Abo-shady

Lecturer of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2011

دراسة مستوى فيتامين د فى المصل فى مرضى انسداد الشعب الهوائية المزمن المستقر

رسالة

تؤطئة للحصول على درجة الماجيستير في الأمراض الصدرية و التدرن

مقدمة من الطبيبة / دينا روبى عبد الصادق بكالوريوس الطب و الجراحة كلية الطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور / عادل محمود خطاب

أستاذ و رئيس قسم الأمراض الصدرية كلية الطب - جامعة عين شمس

الدكتور /تامر محمد على

مدرس الأمراض الصدرية كلية الطب - جامعة عين شمس

الدكتور / رانيه أحمد أبو شادي

مدرس الباثولوجية الإكلينيكية كلية الطب - جامعة عين شمس

كلية الطب - جامعة عين شمس ٢٠١١

In the name of ALLAH, most gracious, most merciful.

Thanks first and last to Allah for granting me the strength and will to accomplish this work, as we owe to Him the great care, support, and guidance in every step of our lives.

I would like to express my cardinal appreciation and infinite gratitude to Professor/ Adel Mahmoud Khattab, Professor of Chest disease, Head of Chest Department, Ain Shams University for his guidance and supportive advice along the entire course of the research.

I would like to express my gratitude to Doctor/ Tamer Mohamed Ali; Lecturer of Chest Diseases, Ain Shams University for his help and patience all through the time of the research and also my great thanks to Doctor/ Rania Ahmed Abo-shady; Lecturer of Clinical Pathology, Faculty of Medicine Ain Shams University for her help all through The time of the research.

I forward my appreciation to all staff of Chest department, my colleagues and nurses for their tremendous efforts to help me to finish this research.

Finally, I would like to thank all my family for their support, help and great love.

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	4
Review of Literature	
• COPD	5
■ Vitamin D	45
Subjects and Methods	76
Results	84
Discussion	105
Summary	115
Conclusion	119
Recommendation	120
References	121
Appendix	
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	The stages of COPD severity according Egyptian society of Chest diseases Tuberculosis	and
Table (2):	The stages of COPD severity according Global initiative for chronic obstructung disease (GOLD)	ctive
Table (3):	Pharmacological Treatment	41
Table (4):	Forms of vitamin D.	48
Table (5):	Description of personal, anthropomes spirometric parameters and vitamin D among all studied groups	level
Table (6):	Description of personal, anthropomes spirometric parameters and vitamin D among control group.	level
Table (7):	Description of personal, anthropomes spirometric parameters and vitamin D among cases.	level
Table (8):	Description of personal, anthropomes spirometric parameters and vitamin D among moderate COPD study group	level
Table (9):	Description of personal, anthropomes spirometric parameters and vitamin D among severe COPD study group	level
Table (10):	Description of personal, anthropomes spirometric parameters and vitamin D among very severe COPD study group.	level
Table (11):	Comparison between studied gr regarding smoking status (pack/year)	-

List of Tables (cont...)

Table No.	Title	Page No.
Table (12):	Comparison between studied regarding anthropometric measures.	
Table (13):	Comparison between studied regarding FEV ₁ /FVC and FEV ₁ %	
Table (14):	Comparison between studied regarding vitamin D level	~ -
Table (15):	Comparison between studied regarding vitamin D sufficiency deficiency.	and
Table (16):	Correlations between Vitamin D level pack/year, anthropometric measurements FEV ₁ /FVC and FEV ₁ % among	asures, control
Table (17):	group	el, age, asures,
Table (18):	Correlation between Vitamin D level pack/year, anthropometric mea FEV ₁ /FVC and FEV ₁ % among Mc COPD group	asures, oderate
Table (19):	Correlation between Vitamin D level pack/year, anthropometric mea FEV ₁ /FVC and FEV ₁ % among severe group	asures, COPD
Table (20):	Correlation between Vitamin D level pack/year, anthropometric mea FEV ₁ /FVC and FEV ₁ % among very COPD group	el, age, asures, severe
Table (21):	Multiple Regressions for studying r between vitamin D level as a dep- variable and other independent varia	elation endant

List of Figures

Fig. No.	Title Page .	No.
Fig. (1):	Cells and Mediators Involved in the Pathogenesis of COPD	22
Fig. (2):	Plain chest radiographs of generalized emphysema particularly affecting the lower zones.	32
Fig. (3):	Normal spirogram and a spirogram typical of patients with mild to moderate COPD	34
Fig. (4):	Cholecalciferol(D ₃)	45
Fig. (5):	Calcium regulation in the human body	47
Fig. (6):	The epidermis of the skin	49
Fig. (7):	Natural sources of vitamin D such as salmon.	54
Fig. (8):	Spirometric flowmate	78
Fig. (9):	Comparison among all studied groups regarding pack/year.	88
Fig. (10):	Comparison among the different studied groups regarding mean body mass index	89
Fig. (11):	Comparison among the different studied groups regarding mean FEV ₁ /FVC	91
Fig. (12):	Comparison among the different studied groups regarding mean FEV ₁ %	91
Fig. (13):	Comparison among the different studied groups regarding mean vitamin D level	93
Fig. (14):	Correlation between Vitamin D level and body mass index among control group	95

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (15):	Correlation between Vitamin D level FEV ₁ % among cases	
Fig. (16):	Correlation between Vitamin D level weight among Moderate study group	
Fig. (17):	Correlation between Vitamin D level weight measures among severe study gr	
Fig. (18):	Correlation between Vitamin D level body mass index among severe study gro	
Fig. (19):	Correlation between Vitamin D level Weight among very severe study group.	
Fig. (20):	Correlation between Vitamin D level body mass index among very severe s group	study

List of Abbreviations

1, 25 (OH)₂ 1, 25-hydroxyvitamin D levels.

25(OH) D 25-hydroxyvitamin D levels.

AAP The American Academy of Pediatrics.

ABG Arterial blood gases.

ATS The American Thoracic Society.

BLVR Bronchoscopic lung volume reduction.

BMI Body mass index

BTS The British Thoracic Society.

CBC Complete blood count.

CD4 cluster of differentiation 4.

CD8 Cluster of differentiation 8.

Chest x-ray P-A view Chest x-ray post-anterior view.

COPD Chronic obstructive pulmonary disease.

CT Computed tomography.

DLCO Diffusing Capacity of the Lung for Carbon

Monoxide.

ECG Electrocardiogram.

ELISA Enzyme-linked immunosorbent assay.

ERS The European Respiratory Society.

ESR Erythrocyte sedimentation rate.

ETS Environmental Tobacco Smoke.

FEV₁ Forced expiratory volume in first second.

FEV₁/FVC Forced expiratory volume in first second/

forced vital capacity.

FVC Forced vital capacity.

GM-CSF Granulocyte-Macrophage Colony

Stimulating Factor.

GOLD Global Initiative for Chronic Obstructive

Lung Disease.

HAL-DRB1 Human leucocytes antigen DRB1.

HIV Human immunodeficiency virus.

ICU Intensive care unit.

IFN-γ Interferon gamma.

IL-8 Interleukin 8.

IOM Institute of Medicine.

LTB4 Leukotriene B4.

LVRS Lung volume reduction surgery.

MCP-1 Monocytes chemo tactic protein-1.

MENA Middle East and North Africa region.

MIP-1 Macrophage inflammatory protein-1.

MMP-9 Matrix metalloproteinasis-9.

NHANES The National Health and Nutrition

Examination Survey.

PaCO₂ Arterial partial pressure of CO_2 .

PAD Peripheral artery disease

PaO₂ Arterial partial pressure of O_2 .

RTI Respiratory tract infections.

SaO₂ Oxygen saturation.

SD Standard deviation.

SNP Single nucleotide polymorphism.

TLR Toll-like receptors.

TNF alpha Tumor necrosis factor alpha.

TRPV6 Transient receptor potential cation

channel, subfamily V, member 6.

URTI Upper respiratory tract infections.

US United States of America.

UV Ultraviolet

VDBP Vitamin D-binding protein.

VDR vitamin D receptor.

VDRE Vitamin D Responsive Element.

Yrs Years.

Chronic obstructive pulmonary disease is a major cause of chronic morbidity and mortality throughout the world. Many people suffer from this disease for many years and die prematurely from it or its complications. COPD is the fourth leading cause of death in the world and further increase in its prevalence and mortality can be predicted in the coming decades (GOLD, 2009).

INTRODUCTION

COPD is a preventable and treatable disease with some significant extra pulmonary effects that may contribute to the severity of the disease in individual patients. Its pulmonary component is characterized by air flow limitation that is not fully reversible. The air flow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to an anoxoius particles or gases (GOLD, 2009).

Vitamin D is a fat soluble vitamin that is naturally present in very few foods, added to others and available as dietary supplement, it is also produced endogenously when ultraviolet rays from sunlight strike the skin and trigger vitamin D synthesis (*DeLuca, 2004*).

1

Vitamin D obtained from sun exposure, food and supplements is biologically inert and must undergo two hydroxylation in the body for activation. The first occurs in the liver and convert vitamin D to 25-hydroxy vitamin D [25(OH)] also known as calcidiol. The second occur primarily and forms the physiologically active1, 25 dihydroxy vitamin D[1,25(OH)D] also known as calcitriol (*Van, 1997*).

Serum concentration of 25(OH) is the best indicator of vitamin D status. It reflects vitamin produced cutaneously and that obtained from food and supplements (*Institute of Medicine, Food and Nutrition Board, 1997*) and has a fairly long circulating half life 15 days (*Jones, 2008*).

Deficiency of vitamin D is common and represents a major health problem. Accumulating evidence has also links a low vitamin D nutritional status to highly prevalent chronic illness including common cancers, autoimmune diseases, infectious and cardiovascular diseases (*Bouillon et al., 2008*) similar to other chronic disease, it was recently found that vitamin D might also be linked to COPD (*Janssens et al., 2009*).

Patients with COPD were considered at high risk for variety of reasons, a lower food intake, reduced capacity of aging skin from vitamin D synthesis, the absence of outdoor activity and sun exposure, an increased catabolism by glucocorticoids, impaired activation because of renal dysfunction and a lower storage capacity in muscles or fat due to wasting may contribute to a defective vitamin D status in patients with (COPD) (Holick, 2007).