

Ain Shams University Faculty of Engineering Structural Engineering Department

Improving the End Anchorage of Strengthened Steel I-Beams Using Locally Available CFRP Laminates

By

Ismail Ahmed Mohamed Amer

B.Sc. Civil Engineering Ain Shams University, 2010

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering (Structural Engineering)

Supervisors

Dr. Mona Mostafa Abdel Wahab

Associate Professor Structural Engineering Department Faculty of Engineering - Ain Shams University

Dr. Mohamed A. Khalf

Associate Professor Structural Engineering Department Faculty of Engineering- Ain Shams University

Dr. EhabFawzySadek

Assistant Professor Structural Engineering Department Faculty of Engineering- Ain Shams University

APPROVAL SHEET

: Master of Science in Civil Engineering (Structural)

Thesis

Researcher Name	: Ismail Ahmed Mohamed Amer	
Thesis Title	Thesis Title : Improving the End Anchorage of Strengthened Steel	
	I-Beams Using Locally Availab	le CFRP Laminates
Examiners Com	mittee:	<u>Signature</u>
Prof. Dr. Gouda M	Iohammed Ghanem	
Professor of Properties Faculty of Engineering	and Testing of Materials - Helwan University	
Prof. Dr. El -Sayeo	d Abdel-Raouf Nasr	
*	and Testing of Materials - Ain Shams University	
Dr. Mona Mostafa	Abdel-wahab	
	tructural Engineering Department - Ain Shams University	

Associate Professor- Structural Engineering Department Faculty of Engineering - Ain Shams University (Supervisor)

Dr. Mohamed A. Khalf

INFORMATION ABOUT THE RESEARCHER

Name : Ismail Ahmed Mohamed Amer

Date of birth : 01 September 1988

Place of birth : Al-Mansoura, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Structural Engineering

University issued the degree : Ain Shams

Date of issued degree : August 2010

Current job : Teaching Assistant

ACKNOWLEDGEMENT

I would like to express my deepest thanks and appreciation to my supervisors, Dr. Mona Mostafa Abdel Wahab, Dr. Mohamed A. Khalf and Dr. EhabFawzySadek for their valuable assistance, guidance, patience and endless support throughout this research, and reviewing of the manuscript are greatly acknowledged. I am grateful to their all for having the opportunity to work under their supervision.

I would like to thank the technical staff and labors of the Laboratory of the Properties and Testing of Materials at the Structural Engineering Department of Ain Shams University for their distinguished assistance during the experimental work.

I would like to deeply thank my family for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

Special thanks to my son Ahmed and my daughter Noran because i took from their time during writing this thesis.

I cannot express in words my gratitude to my wife. She has borne bad times with me and yet encourages and supports me. She is the affective mother of our sons. **STATEMENT**

This thesis is submitted to the Faculty of Engineering, Ain shams

University, as a partial fulfillment for the degree of Master of Science in

Civil Engineering (Structural Engineering). The work included in this

thesis was carried out by the author, and no part of it has been submitted

for a degree or a qualification at any other scientific entity.

Name: Ismail Ahmed Mohamed Amer

Date: 26 / 10 / 2016

ii

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

STRUCTURAL DEPARTMENT

Abstract of the M.Sc. Thesis Submitted by

Eng.: Ismail Ahmed Mohamed Amer

ABSTRACT

Recently, application of carbon fiber reinforced polymer (CFRP)

laminates for strengthening of steel beams has been of wide interest.

However, flexural strengthening of steel beam by using CFRP usually

suffers serious problems in the form of peeling and debonding at the end

of the CFRP laminates. This is normally attributed to the very high stress

and strain intensity that occurs at the end of the CFRP laminates. To

overcome these problems, some researchers have investigated different

techniques of end-anchoring for strengthened steel beams in flexure.

The main objective of this research is to study the effectiveness of

different mechanical techniques of end-anchoring by using steel plates

and bolts to improve the end anchorage of locally available CFRP

laminates used for strengthening steel beams in flexure. Moreover, the

mechanical efficiency of the locally available bonding materials used for

strengthening steel beams has been investigated.

The experimental test program was designed to achieve the research

objectives of the study. The experimental program consists of two

phases: Phase one was designed to studythe mechanical efficiency of the

bonding materials of three companies available in the Egyptian market

through conducting a set of standard tests.

111

Abstract

Phase two was designed to study the effectiveness of different mechanical end anchorages for steel I-beam strengthened with CFRP laminates using the optimal bonding material based on phase I results. Five steel I-beams were tested in flexure. The first beam was not strengthened and was used as the control beam. The second beam was strengthened by CFRP laminates without any end-anchorage. The three other beams were strengthened by CFRP laminates with three different mechanical end-anchorages using steel plates and bolts.

The results of the experimental program showed that the application of steel plates and bolts is an effective technique for CFRP end-anchoring of steel I-beams. Using end anchorage significantly improved the load carrying capacity of the steel I-beam. CFRP end anchorage decreased the deformation and strain of the whole beam including the vertical deflection, lateral deflection, and the tensile strain on the CFRP laminates. In addition, the mode of failure was more ductile instead of brittle and sudden failure.

Keywords: Mechanical end anchorages, CFRP laminates, Steel I-beam, Flexural strengthening, Deflection, Tensile strain.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
STATEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	V
LIST OF FIGURES	X
LIST OF TABLES	xvi
CHAPTER (1): 1INTRODUCTION	1
1.1 Background	1
1.2 Problem statement	1
1.3 Research Objectives	2
1.4 Thesis Organization	2
CHAPTER (2):LITERATURE REVIEW	4
2.1Introduction 4	
2.2Repair and Strengthening of Steel Structures	4
2.3FRP Composites	5
2.4Advantages and disadvantages of FRP	5
2.5Lack of FRP-Steel design guideline	5
2.6FRP / Steel bond characteristics	6
2.6.1General 6	
2.6.2Failure modes	6
2.6.3Durability of CFRP – Steel system	7
2.7Strengthening of RC and steel members by FRP	8
2.8Flexural strengthening of steel beams with FRP laminates	11

2.8.1 Modes of failure	12
2.8.2Debonding failures	19
2.8.2.1 General	19
2.8.2.2 End debonding	20
2.8.2.3 Intermediate debonding	20
2.9Improving CFRP-Steel connection.	21
2.9.1 Choosing suitable materials	22
2.9.2 Surface preparation	23
2.9.3 CFRP detailing	24
2.9.4 Anchoring the end of the CFRP strips	27
CHAPTER (3): EXPERIMENTAL PROGRAM	34
3.1 Introduction	
3.2Research Program	
3.3Phase (I): Studying the Mechanical Efficiency o	•
3.3Phase (I): Studying the Mechanical Efficiency o Available Bonding Materials used for Steel Beams	Strengthening
Available Bonding Materials used for Steel Beams	Strengthening 35
Available Bonding Materials used for Steel Beams	Strengthening 35
Available Bonding Materials used for Steel Beams	Strengthening 35 35 35
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials 3.3.1.1 CFRP laminates	Strengthening 35 35 35
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials 3.3.1.1 CFRP laminates 3.3.1.2 Adhesives	Strengthening
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials 3.3.1.1 CFRP laminates 3.3.1.2 Adhesives 3.3.1.3 Steel 36	Strengthening
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials. 3.3.1.1 CFRP laminates. 3.3.1.2 Adhesives. 3.3.1.3 Steel 36 3.3.2 Tension test of control steel specimens.	Strengthening
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials	Strengthening
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials 3.3.1.1 CFRP laminates 3.3.1.2 Adhesives 3.3.1.3 Steel 36 3.3.2 Tension test of control steel specimens 3.3.2.1 Test specimens 3.3.2.2 Test set up and testing procedure	Strengthening
Available Bonding Materials used for Steel Beams 3.3.1 Properties of used materials. 3.3.1.1 CFRP laminates. 3.3.1.2 Adhesives. 3.3.1.3 Steel 36 3.3.2 Tension test of control steel specimens. 3.3.2.1 Test specimens. 3.3.2.2 Test set up and testing procedure. 3.3.3 Tension test of CFRP strips.	Strengthening

3.3.4.1 Test specimens	46
3.3.4.2 Preparation of test specimens	46
3.3.4.3Test set up and testing procedure	48
3.3.5Compression test of Adhesive materials	48
3.3.5.1 Test specimens	48
3.3.5.2 Test set up and testing procedure	49
3.3.6 Single - Lap shear test of adhesive materials	50
3.3.6.1 Test specimens	50
3.3.6.2Preparation of test specimens	50
3.3.6.3Test set up and testing procedure	52
3.3.7Double - lap shear test of adhesive materials	53
3.3.7.1 Test specimens	53
3.3.7.2Test specimens preparation	54
3.3.7.3Test set up and testing procedure	55
3.4 Phase (II): Studying the Effectiveness of Different Mec	hanical
Techniques of End-Anchoring for Steel	
Strengthened with CFRP Laminates	57
3.4.1 Materials Characterization	57
3.4.1.1 CFRP laminates	57
3.4.1.2Adhesive material	58
3.4.1.3Steel I-Beams	58
3.4.1.4 Steel anchor plates	59
3.4.1.5Bolts 60	
3.4.2Test specimens	62
3.4.3Anchorage systems	64

3.4.5Test setup 73

CHAPTER (4):TEST RESULTS AND DISCUSSION	83
4.1 Introduction	83
4.2 Phase (I)	83
4.2.1 Tension test on steel specimen	83
4.2.2 Tension test on CFRP laminate	85
4.2.3 Tests on adhesive material	93
4.2.3.1 Flexure test	93
4.2.3.2 Compression test.	95
4.2.3.3 Single – lap shear test	99
4.2.3.4 Double – lap shear test.	103
4.2.4 Comparisons between all test results for the three companies.	110
4.2.5 Comparisons between tests results and material data sheets	112
4.3 Phase (II)	117
4.3.1 Tension test on formed steel specimens	117
4.3.2 Tension test on bolts	117
4.3.3 Beams bending test	119
4.3.3.1 Load bearing capacity	119
4.3.3.2 Modes of failure	120
4.3.3.3 Vertical deflection	127
4.3.3.4 Lateral deformation	128
4.3.3.5 Strain on the CFRP strip	130
4.3.3.6 Bottom flange strain	134
4.3.3.7 Interfacial stresses at CFRP plate end	135
CHAPTER(5):SUMMARY,CONCLUSIONS,AND	
RECOMMENDATIONS	139

5.1 Summary	139
5.2 Conclusions	140
5.3 Recommendations	143
REFERENCES	144
Appendix A. Theoretical Analysis of Beams	
Appendix B. Calculation of Maximum Principle Interfacial	Stresses at
the CFRP plate End for Strengthened Beam	

LIST OF FIGURES

Figure (2.1): Schematic view of typical failure modes [20]	7
Figure (2.2): CFRP–steel system under environmental conditions [23].	8
Figure (2.3): Properties of FRP composites compared with tradition	nal
construction materials [24]	. 10
Figure (2.4): The modes of failure for a strengthened steel member	r in
flexure by FRP [24]	. 12
Figure (2.5): Test setup and beam dimensions [38]	. 13
Figure (2.6): 3D simulated specimen [38]	. 14
Figure (2.7): Failure modes for flexural strengthened of steel I-beams	by
CFRP [38]	. 16
Figure (2.8): A graphical explanation of the CFRP Failure modes [39].	. 18
Figure (2.9): Stress intensity below point load (FEM) [39]	. 19
Figure (2.10): End debonding failure [18]	. 20
Figure (2.11): Intermediate debonding in a cracked steel beam [18]	. 21
Figure (2.12): Different configurations of the steel plate reinforcement	ient
[31]	. 22
Figure (2.13): Detail of splice joint configurations (side view) [51]	. 25
Figure (2.14): Splice joint configurations of the double-lap shear to	ests
(side view) [62]	. 27
Figure (2.15): Clamping system assembly [47]	. 28
Figure (2.16): Test setup and beam dimensions [63]	. 29
Figure (2.17): Some views obtained from ANSYS [63]	. 29
Figure (2.18): Modes of failure [63]	. 31
Figure (2.19): Analysis of results [63]	. 32
Figure (3.1): Shape of CFRP laminate	. 36
Figure (3.2): Dimensions of control steel specimens	. 37

Figure (3.3):Tension test of control steel specimen	38
Figure (3.4): Dimensions of tension test CFRP specimen	38
Figure (3.5): The used electrical strain gauge	40
Figure (3.6): Schematic drawing forthe details and dimensions of the	end
anchorage set	40
Figure (3.7): The assembly parts of the anchorage sets	42
Figure (3.8): Schematic drawing for the assembly of the anchorage set	ts43
Figure (3.9): Schematic drawing for the installation of the test specific	men
in the testing machine	44
Figure (3.10): The CFRP specimen after clamping the end anchorage	sets
	45
Figure (3.11): Tension test of CFRP strips	45
Figure (3.12): Dimensions of flexure test specimen of adhesive mater	rials
	46
Figure (3.13): Weighing process of the two parts of the bonding mater	rials
	47
Figure (3.14): Mixing process of the bonding materials	47
Figure (3.15): Pouring and vibration process of the bonding materials.	47
Figure (3.16): Flexure test of adhesive materials	48
Figure (3.17): Compression test specimen of adhesive materials	49
Figure (3.18): Compression test of adhesive materials	49
Figure (3.19): Dimensions of single - lap shear test specimen	50
Figure (3.20): Preparation of steel and CFRP strips	51
Figure (3.21): Cleaning of steel and CFRP strips surfaces	51
Figure (3.22): Gluing of CFRP strips to the steel plates	52
Figure (3.23): Single-lap shear test of adhesive materials	52
Figure (3.24): Dimensions of double-lap shear test of adhesive specin	nens
	53

Figure (3.25): Preparation of double – lap shear test specimens 54
Figure (3.26): The procedures for the preparation of test specimens 55
Figure (3.27): The process of gluing the electrical strain gauge on the
specimens
Figure (3.28): Double-lap shear test of adhesive materials
Figure (3.29): Dimensions of steel I-beam
Figure (3.30): Dimensions of tension test specimen
Figure (3.31): Details and dimensions of the steel anchor plates 60
Figure (3.32): Shapes of the used bolts
Figure (3.33): Preparation of the specimen before testing
Figure (3.34): Tension test of bolts specimens
Figure (3.35): The full dimensions and details of the control beam 63
Figure (3.36): Details and dimensions of Anchorage (A)
Figure (3.37): Details and dimensions of Anchorage (B)
Figure (3.38): Details and dimensions of Anchorage (C)
Figure (3.39): Preparations of steel surface
Figure (3.40): Cleaningthe surfaces of steel and CFRP strips
Figure (3.41): Gluing the CFRP strip to the beam's bottom flange 68
Figure (3.42): Covering the ends of CFRP strip by adhesive
Figure (3.43): Placing the steel anchor plates at the ends of CFRP strip 69
Figure (3.44): Cleaning of the excess adhesive
Figure (3.45): Placing the wooden plates and steel clamps
Figure (3.46): The process of gluing the electrical strain gauges on the
specimen
Figure (3.47): A schematic drawing of the three-point bending test and
the support beam
Figure (3.48): The support beam before placing it on the testing machine